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Abstract— In this paper, we present anO(1) time-complexity WFQ scheduler must perform each comparison in less than
packet scheduling algorithm which we call G-3 that provides 2 nanoseconds!
bounded end-to-end delay for fixed size packet networks. G-3  Another category of algorithms use round-robin instead of

is built over two round-robin schedulers SRR [10] and RRR .. .
[7] and several novel data structures. In G-3, bounded delays time-stamp to perform scheduling (e.g., RRR [7], SRR [10],

provided by evenly distributing the binary coded weight of a Aliquem [12], and DRR [17]). Due to the simplicity nature
flow into a Square Weight Matrix (SWM) and several Perfect of round-robin, most of the round-robin schedulers héy&)
Weighted Binary Trees (PWBTSs). In order to achieveO(1) time  time-complexity. But they generally cannot provide bowhde
complexity, the SWM matrix is further spread by a Weight delay.

Spread Sequence (WSS) and each PWBT tree is spread by a . .
corresponding Time-Slot Sequence (TSS), respectively. &then Recently, there emerged new scheduling algorithms by

performs packet scheduling by sequential scanning the WSshd  integrating time-stamp and round-robin schemes {G#,
TSS sequences. G-3 can be implemented in high-speed packeSTRR [16], FRR [21]). These algorithms divide flows into

networks to provide bandwidth guarantee, fairness, and bonded  (ifferent groups according to their weights, and use time-
delay due to its O(1) time complexity. stamp based schedulers for inter-group scheduling andiroun
robin based schedulers for intra-group scheduling. Howeve
the number of groups in these algorithms is at I€28bg V),

The Internet has become an information infrastructure ®f tthese algorithms therefore can hardly be considérgd time
world. As an infrastructure, it is expected to support vasio complexity schemes. Moreover, the delays of these schemes
applications such as voice over IP, video conferencing, aatke either not clear or in proportion 1.
file sharing, which have very different bandwidth, delatgeji, Since all the proposed schemes have eith@pgN) time
and packet loss requirements. Many frameworks have besmplexity and bounded delay @¥(1) time complexity and
proposed to enable a multi-service Internet (e.g., [2). [@he unbounded delay, it is therefore natural to aslOifl) time
of the key technologies for multi-service support is a packeomplexity schedulers cannot provide bounded delay. I [20
scheduler. A packet scheduler decides which flow to serttee authors showed that under the comparison computing
when the output link has finished transmitting the previounodel, which is used by the time-stamp based schemes,
packet. A good packet scheduler should provide bounded etite lower time complexity bound to provide bounded delay
to-end delay, fair bandwidth sharing, low time complexityis Q(log/N). However, round-robin schedulers dwt use
and is simple to implement. Due to the importance of packebmparison for scheduling, it is therefore still unknowthiére
scheduler, packet scheduling algorithms have been studédstsO(1) time complexity, non-time-stamp based schedulers
extensively ever since [6] and [13]. that provide bounded delay.

One category of packet scheduling algorithms maintainIn this paper, we propose a round-robin packet scheduler,
time-stamps for each flow (e.g., Weighted Fair Queueinghich we call G-3, that has bot®(1) time complexity and
(WFQ) [6]). Using WFQ as an example, the time-stampounded delay for fixed size packet networks. G-3 is built
tagged to a flow is calculated from an ideal fluid Generalizaaer two previously proposed schedulers SRR [10], which has
Processor Sharing (GPS) model. WFQ always serves the flo\l) time complexity but unbounded delay, and RRR [7],
with the largest time-stamp and it provides bounded endhich provides good delay property but has time complexity
to-end delay [15]. The time complexity of WFQ ©(N), comparable taO(logN). The novelty of G-3 lies in several
where N is the number of active flows in the schedulemewly introduced data structures. In G-3, each flow is agsign
Many schemes were then proposed to either reduce tingeweight that is in proportion to its reserved rate. The weigh
complexity or improve performance of WFQ, e.g., [1], [5]is represented in its binary form and distributed into a $gua
[8], [9], [18]. Most of these algorithms provide boundedMeight Matrix (SWM) and several Perfect Weighted Binary
end-to-end delay and all of them have at leéiflogN) Trees (PWBT). The weights of the flows are evenly distributed
time complexity.O(logN'), however, does not scale well forinto SWM and PWBTS, so that bounded delay is achieved. G-
high-speed networks which only have nanoseconds to makéhen spreads the SWM matrix by a Weight Spread Sequence
scheduling decisions. For example, for a 40 Gb/s (OC-76@)/SS, which is introduced in SRR) and each PWBT tree by
link, a packet of size 200 bytes will be transmitted in 0.04 Time-Slot Sequence (TSS). G-3 achie#d) time com-
us. WhenN = 105, log, N = 20, which means that a plexity by reducing packet scheduling to sequential saagni
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the WSS and TSS sequences. We also have designed varifloigs are used to form a Weight Matrix as below.
of G-3 to handle variable packet size (see [11]), these ntwia

are not further discussed in this paper due to space limitati @0,(k—1) @0,(k=2) 1 400
To the best of our knowledge, G-3 is the fiS(1) time- a7 — al"(’f*” al"(’f”) o a0 3)
complexity scheduler that provides bounded end-to-enalydel : : - :

The rest of the paper is organized as follows. In Section AN_1,(k=1) ON—1,(k=2) *°° GN-1,0

II, we overview SRR an(_JI RRR anql provide analytical dela%(/hereai_j €{01},0<i<N—1,and0<j<k—1 The
bounds for SRR. In Section Ill, we introduce several key data ’ . . :
columns of the Weight Matrix are numbered from left to right
structures and then formally present G-3. The delay andespags col col . coln. respectivelv. We further denote
time complexities of G-3 are analyzed in Section IV. Section® “ kb {0%k=2, ** s Colo, TESP Y-

V demonstrates the delay property of G-3 using simulatioq%févze i=o @iy fOr 0.<j <k —1. For this WM matrix, we
Section VI concludes the paper.

0<y; <N 4)
Il. SMOOTHED ROUND ROBIN AND RECURSIVE ROUND and
ROBIN N-—1 N—-1k—-1 .
> o= {a; 2y < C (5)
We assume there af€ flows, numbered frony, to fy_1, i=0 i=0 j=0

in the scheduler. The reserved rate for flgwis ;. A flow \\hereC is the bandwidth of the output link.

fi is assigned a weight; which is in proportion to its rate |5 SRR, the Weight Matrix is then scanned by a specially

ri- Without losing generality, we assumeg = r;. We assume gesigned Weight Spread Sequence (WSS). A set of WSS is
packets are of the same size defined as

In anideal scheduler, for a flovxf with re_sgrved rate, the WSSk ={aF1 <i<2¥—1} (6)
total bytes that have been transmitted at tineS* (t —tq) = _ _ _
r(t—to), wheret, < t is the arrival time of flowf. S(t—t,) Wwherea; is defined recursively as

may be less than(t — t() if the arrival bits of a flow is less g1 | <i<ok-1_1

thanr(t — to). If this is the case, the flow can be split into oF — v i — 9h—1 )
. ] . . . i ) -

several flows which are non-overlapped in their time durgtio af__zlkfl, b1 _ <ok 1

each with the property®(t — to) = r(t — to). It is easy to
observe that, in the ideal scheduler, t}ﬂ_e(z’ > 0) packet of for k > 1, and WS$ = {al = 1}. We call k the order

f will be finished transmission at timg? = ¢, + *£. We of sequence WSS It is apparent that the set of elements of
further denote the bits transmitted fgr at timet in areal WSS is {1,2,3,---,k} and the size of WSSis 2% — 1.

packet scheduleps as SP*(t — to). We call S“(t — t) the SRR then scans the terms of WSS cyclically. When the
ideal service curve of andSP*(t —to) the service curve of value of the current scanned termjiscolumnk — j of the

[ underps, respectively. Weight Matrix is selected. For each occurreagg_; # 0 in
Definition 1: A packet scheduleps provides bounded de- this column, packet frony; is then transmitted. Due to the
lay for flow f, if the finish timet!*(i > 0) satisfies desired properties of WSS and WM, flows are served fairly

. according to their weights.
th <t + ixL 4 dps (1) Readers are referred to [10] for details of SRR. Though
r SRR has stricD(1) time complexity for packet scheduling,
wherer is the reserved rate of, andd?® is defined as it does not provide bounded delay. We will show analytically
_ that the delay bound of SRR is in proportion to the number
dr® = Tﬁg{{dfs} = I?Bgc{tfs — 111} < const (2) of active flows in next subsection (see Theorem 1).

whereconst is a constant that is independent of the numb
of active flowsN. Definition 1 is identical to say tha?* (¢ — . .
to) > S%(t —to — 7), wherer is a constant. The adoption of In SRR, when a non-zero termy ; of the Weight Matrix

Definition 1 can simplify the analysis in the rest of the papel® Visitéd, we say that the corresponding flgwis assigned
In next subsections, we briefly overview SRR and RRR argfiime-slot We use a variabl@'S(t) to count the number of

provide several new results of SRR which will be used ifime-slots assigned in SRR at tinte 'S is set to 0 when
analyzing G-3. SRR starts (i.e.7'S(0) = 0), and is increased by 1 when a

non-zero term of the Weight Matrix is visited.

Suppose a flowf with weight 2™, i.e., r = 2", arrives at
the scheduler at timg&), and the corresponding elemént-n

There are two key data structures in SRR [10]: Weight WSS has been scannédimes att,. We denote the value
Spread Sequence (WSS) and Weight Matrix (WM). of T'S at the time whery has been serveidtimes asT'S(t;).

In SRR, the weight off; is represented as; = r;, = Definition 2: We defineT’S,, (i) = T'S(t;) —T'S(to), which
Zf;é{ai7j2j}. The binary coefficients; ; of the N active is the number of assigned time-slots in SRR from the time

2 Delay property of SRR

A. Overview of the Smoothed Round Robin
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when flow f (with rate 2") arrives to the time wherf is weight of vy g, 2, is larger than-- 16, RRR then splits); o into

servedi (i > 1) times. vg,0 andws 1. Similarly, vg o is split intovs o andws, 1, V30 IS
As to T'S,, (i), we have lemma as follows. split into v4,o andwy ;1. Since the weight oty ¢ is 16, V40 IS
Lemma 1:For a flow f with rate2” in SRR, from the time therefore allocated tg.

when f arrives at the scheduler to the time whgns served  Fig. 1 shows the WBT tree after flomﬁ f4 have been

i times, the value of'S,, (i) is bounded by added The weights of the flows ang = 16, Wy = g wy =
iC Wy = 3 respectlvely In RRR, the unallocated leaf nodes of
TS,(i) < on +0(n)N (8) the WBT tree are allocated to a special flgig, which is an

wheref(n) < n. The proof of Lemma 1 is given in [11] andidle flow to consume the unused bandwidth. After adding these

is omitted here due to space limitation. From Lemma 1, Wi®ws in, vy, v31, v21, andvs > are allocated to flows,

have theorem as follows. fa, fs, fa, respectivelyn, ; andwy 3 are allocated to the idle
Theorem 1:In SRR, for a flowf with rater = w = 2" flow fo.

(0 <n < k), its delay bound

Level 0

d" < 6(n) x N x g 9)
Proof: The time whenf finishes serving itgth packet,
ti, is

Level 1

ti =to+TSn(i)%
<to+2E4+0n)x Nx%

Level 2

Therefore

Level 3

A =t — (to+ 5) <0(n) x N x &

Level 4

for all = > 0. [ |

In fact, we have lemma for flows with arbitrary rates as ouputofRrr:  T; fy 5 Ty f, 5 ) o £, £, £, £,
follows.

Lemma 2:In SRR, for a flow f with rate r = w = Fig. 1. An example to illustrate how RRR works. The core datacture
Yoim 2% (0 < ng < mg,---, < nyy < k— 1), its delay bound o RrR is a Weighted Binary Tree (WBT). '
: L L After the formation of the WBT tree, scheduling is per-
d" < 0(ny,) X N x = —1)— 10 . N Al . .
(nm) C +m=1) (10) formed as illustrated in Fig. 2. Each intermediate nogein
wherem is the number of non-zero binary coefficientsrof ~the WBT tree is associated with a boolean variafilp (v ; ).
The proof of Lemma 2 is also given in [11]. Both Theorer‘[flip_(vi,j_)_ls initialized to 0 and changes its value each time
1 and Lemma 2 show that*’” is in proportion toN. SRR v; ; is visited.

therefore does not provide bounded delay. The scheduling procedure of RRR

C. Overview of the Recursive Round Robin 1 while (the scheduler in busy-period)

In RRR [7], the output bandwidth is normalized to 1, and v = 0,0, . _
the weight of a flow isw = Z. The normalized weight is 3~ While (v is an intermediate nodg)

further represented as ~ >-%_, b;277, whereb; € {0,1} is 4 if (flip(v) == 0)

the coefficient ofw. 5 tmp = left_child(v);
The core data structure of RRR is a Weighted Binary Tr@e else

(WBT). This WBT tree hag + 1 levels, with root nodey o tmp = rightchild(v);

at level 0, and the two children af, o, namelyv; o andv; 1, 8 flip(v) = flip(v) XOR 1;

at level 1, etc. A node of the WBT tree is denotedas, 9 v = tmp;

wherel indicates its level and represents its id at levél We 10

have0 < I < g and0 < i < 2. An intermediate node;; 11 /= flow id that corresponds to;
has a left childu;, 12 and a right childv;,1.0:,1. See Fig. 12  ServeFlow );

1 for an example of such a WBT tree. A node at leialf 13 }
the WBT tree is associated with a weight!. The root node

vo,0, therefore, has weight 1, and its childreno and v; ;

have Weights%, respectively. Using the scheduling procedure to serve the tree in Fig. 1,

We use an example as illustrated in Fig. 1 to show howe get the following output service sequence in one round:
the WBT tree is formed. Suppose the scheduler is idle at the

Fig. 2. The scheduling procedure of RRR.

beginning (i.e., the WBT tree has only ong, node), then a hisfsfoffafsfofofafsfofafafsto
flow f; with rate comes. Since the only unallocated node In [7], the authors showed that, in RRR, for a flgfwvith
is vg,0, RRR spllts it into two nodes; o andv; ;. Since the weightw = Z D27 (0 < ng < ngyce,< Ny < g), ItS

3



delay bound by that node are also allocated foln Fig. 3, since nodes ;
g < ™M x L (11) is allocated tofs, thenwvy 4, va5, v4,6, anduvy 7 are allocated
- to f3 consequently.

wherem is the number of non-zero coefficients of

RRR has two issues. First, the valuerafdepends on both
r andC. Since the bandwidth may not be known in advance,
RRR hence cannot control the valuerafto small values. For
instance, for a flow with rate = 32kb/s, C = 10mb/s, and
g = 20, its m = 6. When L = 200 bytes, the delay bound
d™" is as large as 300 ms!

Second and most importantly, the time complexity of RRR S
is high. According to Fig. 2, RRR needs steps to select "f;f”
a packet, whergy is the depth of the WBT tree. The time
complexity for packet scheduling is therefoge This time ;
complexity does not have advantage over the time-stamplbase v, V4$1."V4;'z’"'v‘1;3?
algorithms, whose time complexity is generally(logV), o 8 4 12 2 10 6 14 1
sinceg is at least as large dsg,N. A naive approach to re- TSS*
duce the time-complexity of RRR is to pre-compute and Stofg, 3 the perfect Weighted Binary Tree (PWBT) construdiedn the
the scheduling sequence in advance. This approach, hqwevi@sry tree of RRR.
does not solve the problem since the time complexity of pre-
computing is as high a9(C') (> N) and pre-computing needs
to be performed for each flow arrival and departure.

VO,O @ Level 0

9 5 13 3 11 7 15

From the scheduling procedure, RRR will first visit o,
then visitSvy g, va4, - -+, Va7, v415. That is, the indices of
the visited leaf nodes can be described as follows.

I11. THE G-3 PACKET SCHEDULING ALGORITHM

Before we present G-3, we first introduce several novel data
structures: Square Weight Matrix (SWM), Time-Slot Seqeenc In fact, the above sequence can be described by a newly
(TSS), and Time-slot Array (TArray). introduced set of sequences which we call Time-Slot Sequenc
(TSS). TSS is defined as follows.

Definition 4: A set of Time-Slot Sequence (TSS) is defined

0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15,  (14)

A. Square Weight Matrix
Definition 3: A k£ x k weight matrix is a Square Weight g5

Matrix (SWM), if it can be represented as TSS" ={b}0<i<2"} (15)
8 8 C?l %0 wheren > 0 is the order of the corresponding TSS sequence
SWM — o . (12) andby is theith term of TSS, and TSS8 = {bg = 0}. The
: S ith term of TSS3, b7 (n > 0), is defined recursively as
-1 0 - 00 opn ! 0<i<2m!
wherea; € {0,1} andag_; = 1. b’ = { 21,?_—21;] +1, gn—1 <i<2on (16)

Lemma 3:Suppose a SWM is scheduled by SRR, then for From Definition 4, we get TS${0, 1}, TS$={0, 2, 1, 3,
a flow f with rate2” (0 <n < k—1) in this SWM, its delay TSS={0, 4, 2, 6, 1, 5, 3, ¥, and TSS is shown in (14).
bound I I Definition 5: For a n bits binary number i =
d<0(n)x—=<0k-1)x —. (13) byp_1bp_2---bo, whereb; € {0,1} and0 < j < n, its
This lemma follows directly from Theorem 1, since the surreversed binary number is defined as
< <j<k-—1).
of each column of a SWM; <1(0<j<k—1) RB(i,n) = bob - by_1. 17)

B. Time-Slot Sequence and Time-Slot Array From the definition, we geRB(011b,3) = 110b = 6 and

The binary tree used in RRR provides good scheduling odt.B(0001b,4) = 1000b = 8.
put, but experiences scheduling time complexity comparabl ~ The following lemma holds for TSS.
O(logN). In order to reduce time complexity, we first extend Lemma 4:For anth TSS sequence, the value ofith term
the binary tree of RRR into a Perfect Weighted Binary Trelg' is
(PWBT) by adding descendent nodes to the leaf nodes that b = RB(i,n) (18)
are not at the lowest level. Fig. 3 shows such a PWBT tr@éheren > 0 and0 <4 < 2™,
constructed from the binary tree of Fig. 1. An intermediate Proof: We prove this lemma by induction.
node of a PWBT tree is said town a leaf node if the leaf 1) It is obvious to verify that the lemma is correct when
node is its descendent. For example, in Fig. 3, nedeowns n = 1.
V4,4, Va5, Va6, anduvy 7. When an intermediate node in the 2) Suppose the lemma is correct for TSS.e., fori =
PWBT tree is allocated to a flow, all the leaf nodes owned b,,_1b,,—2 - - bg, b = RB(i,n) = boby + - - by_1.
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Then for TSS*!, when0 < i < 27, bt = 267 = as below.

boby - - - by,—10, which is exactlyRB(i,n + 1). When 2™ < T Arrau? —
42" < 27 Bl = 267 + 1, where0 < i < 2". Therefore TATmZQ _ EZ’ ;z’ﬁ’ }Ciif?’fg’ Jo, fol:
b = boby -+ by—11 = RB(i + 2", n +1). TArray' = Lfr. fo},

Lemma 4 therefore follows by induction. ] T Array® = {fo}.

For a nodey; ; of a PWBT tree of dept (0 <! <n and
0 < i < 2!, the set of leaf nodes that owned by is then These 4 TArrays are formed from the 4 PWBT trees as

{no|i2"! < 2 < (i+1)2"'}. We can expresain its binary illustrated in Fig. 4. The detailed procedure of how to gateer
form asb,_1b;_s - - - bo. The indexes of its leaf nodes can thefhe TArrays hag been explained in Section I11-B. There is
be expressed dg_1b;_o---b00- -0, bi_1bj_o---b00---1, & pointerp,, points to the current scanned position of the
<o bi_1bi_3 - boll--- 1. The corresponding reversed binaryVSS' sequence. For eacRArray’, there is also a pointer
numbers of the indexes are therefdd@.--Obgb, ---b,_,, Pi POINts to the current scanned positionfofirray®. p,, and

10---Obgby -+ -by_1, -+ 11---1bgby---b_1. The set of the pointersy;) of the TArrays are initialized to point to their
the reversed binary numbers can therefore be denotedfiEs terms, respectively.
RBS(v,i) = {rb.|0 <z < 2n_l}’ whererb, = 22" + 12 13 121 4 121 31 21 wss
boby - - -bi_1. We therefore get lemma as follows. Scamnec M aya, a3 @, 838,83 )83, a3 A; a3, 4,
Lemma 5:The terms ofRBS(v; ;) are distributed evenly ouputorGs 7 f5 o £} 5 f5 £y £, £ £, £ £, £5 £, £,
in thenth TSS @ > [), and the distance between two adjacent Tree? Tree? Tree! Tree® o

O @
Vo0

terms of RBS(v; ;) is 2!

Based on the idea of TSS, we further introduce an array
which we call Time-Slot Array (TArray). For a PWBT tree Vio
with level n, there is a corresponding time-slot array TAftay

of size2™. The value of TArra} is set as follows. v;,o
for (i =0;i<2%i++) i SN SN v
T Array™[i] = id of the flow that occupies,, rp(i,n); POLLOHHO® gf% rrrrr Lo Tss
For the PWBT tree in Fig. 3, its corresponding time-slot Vg,o VEJ V2§’,z V§,3 ?5.4 Vis Vig Vig o e
H 5 3 7 TSS
array is therefore £f 6, f f f -
TATT@CU4 = {fifafsfofafafsfofofafsfofafafsfo}- Fig. 4. An example to show how G-3 works.

This TArray exactly describes the service sequence of RRR
Hence, with the introducing of time-slot sequence and timg
slot array, we can directly decide which flow to serve witho
traversing the binary tree from root to leaf.

'G-3 then scans the WS$Ssequence cyclically. When the
urrent term of WSS* is i, columnj = 4 — i of the
lgWM is selected, an®@ Array’ is selected consequently. Flow
f = TArray’[p;] is then served. After that,, andp, are
increased by one to point to their next terms, respectividig.
output service sequence of G-3 in one round is therefore
Before we formally present G-3, we use an example to illus-

trate how the newly introduced data structures are intedrat frfsfofrfsfsfofofrfafofafsfefo-

together. Suppose we have 7 flows numbered fifgnto fs
with rate 1; 2 flowsf; and fs with rate 2; 1 flowfy with rate
4. The bandwidth of the output link i€ = 15. fofrfsfofofifefafafsfefof7fsfo.

The bandwidth can be expressed@s= a3 x 2% + ay x )
92 1 a; x 21 + ag x 2°, where the binary coefficienis; = These two service sequences show that G-3 produces a

as = a1 = ap = 1. The coefficients are then used to form &uch smoother output than SRR. For example, agldhe
SWM matrix as below. distances between two successive appearancés afe 3, 4,
4, and 4 in G-3, whereas the distances are 1, 3, 8, and 3 in

C. An example to show how G-3 works

For the same set of flows, the service sequence of SRR is

0 0 0 a SRR.
10 0 a 0
SWM = 0 az 0 0 |- D. Description of G-3
az 00 0 In G-3, we assume that a flow is added into the scheduler
The WSS that corresponds to this SWM is by a call admlss[on cqntroller (CAC) and removed from t.h_e
scheduler by a signalling protocol, and packets are cladsifi
WSSt ={1,2,1,3,1,2,1,4,1,2,1,3,1,2,1}. to different flows by a packet classifier. A flow with packets

in the scheduler is said to Heackloggedand a flow with no
For each binary coefficient;(0 < i < 3), there is a PWBT packet is said to baon-backloggedin G-3, we allocate the
treeTree’. For eachl'ree?, there is a correspondiifArray®  unallocated bandwidth to the best-effort flgfy.



In G-3, the bandwidth of the output link C is denoted
C = Zle 2™ where0 < ny < no,---,n, = |log,C| and
h < |log,C|+1 is the number of non-zero binary coefficient T o o
of C. The weight of a flowf is its reserved rate, i.ew = r. for i =00 <hsit4)pi=0;

There are four major data structures in G-3: A SWM matri W,h'le (the schekdule.r in busy-period)
as defined in (12) to represent the binary coefficients Qf L= k= W55 [pul;
the output bandwidtiC; a kth WSS sequence, wheie = it (a; ==1) { P
[log,C| + 1; h binary trees{Tree™,Tree",---,Tree™"} f=TArray [pil; )
with Tree™ represents2™ of C (the root nodeuvy, of It (f IS backlogged) ServeFlow(f);
Tree™ therefore has weighg™); and h time-slot arrays EISEZdle‘SChed( )i .

{T Array™, T Array™z,---,T Array™ }, to spread the cor- 10 pi = (pi + 1) mod 2°;
respondingh binary trees. There is a pointer, points to 1} K )
the current scanned term of WSS, and for egerray?, 12 pw=1+pymod(2® —1);
there is a pointep; points to the current scanned term 0113 3

) . o . e Add_flow(f, w_f):
TA *. These points are initialized to point to their frsfo‘
rray pol nrualiz pol Ir 1 14 wfzz’;n:lznj’(ognl<n2<<nm<k)'

terms, respectively. e R
There arek linked lists, denoted agListg, Listy, ---, 15 for (3 =m;j=1j--) _
Listi—1}. These lists are used to track the unallocated Ieav% i j get-free-node(n;); )
of the h binary trees. For eachiree’, the correspondingist; i (Ulﬁj: NnULL) return FALSE,
is initialized to have a node ,, wherew , is the root of 18  f( 2> 2 ])n
Tree'. We will show later that when the WBT trees are irt vl = SPIt(v];, 1y);
good shape, each list has at most one node. 20 update CArray”, vf;, f);
Fig. 5 gives the formal description of G-3. There are 3 st
procedures: AScheduleprocedure to decide which flow to22 return TRUE;
serve; arAdd flowto add an incoming flow into the schedulerDeLﬂOW(f): _
and aDelflow to remove a flow when the flow leaves the?3 for (each nodesj; assigned tof) {
system. Note that when a flow becomes non-backloggéd ~ uPdate CArray™, vy, fo);
Del_flowwill notbe invoked Schedulés performed per-packet 25 if(its S|bl|gg ”Zl is idle)
level, whereaé\dd flowandDel _floware invoked only for flow 26 mergeg;;, vii)
arrivals and departures. else _ )
The Scheduleprocedure is quite simple: When there ar&S addvy; into List,—i;
packets in the system (line 45chedulescans the WSS 29 }
sequence (line 5). If the corresponding term of the SWM iSg. 5. Description of G-3. G-3 has 3 major compone@isheduledecides
not O (|ine 6), it then selects the corresponding TArray anwhich flow to serveAdd flow adds a new flow into the scheduler, dbel_flow
retrieves the flow id (line 7). If the selected flow is backlegg "e™°ves a flow from the scheduler.
it then usesServeFlowto transmit a packet for that flow (line ] ] o
8). ServeFloWf) is to dequeue the first packet frofnand ©ccupied by f to fo) (line 24). If the sibling node of the
then transmit the packet. If the selected flow is idle, it thei§/€@se node is also idieyergeoperation is performed (line
executesdle_sched In G-3,idle_schedsimply assigns the idle 26), €lseDel.flow just adds the node into the corresponding
time-slots to the best-effort floviy. Line 10 and line 12 are to lINked list (line 28).mergeis the reverse operation split
update the pointers,, of WSS and; of TArray’, respectively.  In both Del flow and Add flow, update(7"Array™, vJ';, f)
Addflow is invoked when a new flow is accepted by thés used to update TArrdywhen a flow arrives or departures.
CAC controller. For each of the: non-zero binary coefficient, The number of terms in TArrdythat corresponding to node
Add flowtries to allocate a node from the binary trees (line 14"; is 2"~'. The number of terms that needs update in all
and 15). Using2™ as an exampleAdd.flow first tries to get the TArrays is thereforev;. In G-3, we can further reduce
a free node from the: linked lists @etfree.node line 16). the time-complexity ofupdate by carrying outupdate and
If it cannot get a free nodeAdd.flow fails and return (line Scheduleparallelly as follows. We first update the term of
17). If the weight of the returned nod¢, is larger thare™s, TArray that will be firstly visited bySchedulethen update
splitis called (line 18 and 19%plit first dividesv}'; to vy, ,; the rest terms sequentiallypdate therefore only needs to
andvf, , 5, If the weight ofv]', , ,, is still larger than2"s, update the terms beforgchedulevisits them. G-3 visits the
split then recursively divides}", ,;, etc. The weight of the leaf nodes ofv"(l,i) as described by set RBS() (which
returned node is therefoes and the node is then allocateds defined in Section I1I-B). The first term of RB§() that
to f. After that, the corresponding TArray is updated (line 20ill be visited by Schedulds = = {RB(i,n) + y2'} mod 2",
When a flowf leaves the schedulebel_flowis called. For wherey = (%?(“")1. Theupdateoperation can therefore
each node of the binary trees that allocatedftoDel_flow be carried out as follows.
updates the corresponding TArray (i.e., set the terms thatupdate (I"Array”, v;, f):

a?chedule
integer:i, j;
Pw = 1,

6



for (j=0;j <24 5+ ) Proof: Based on the description of G-3, flofr must
tmp = (x + j2') mod 2", be represented by one of the terms(m > n) of the SWM
T Array™[tmp] = f; matrix.
From Lemma 5, flowf will be served once when,, is
Note that G-3 may face the bandwidth fragmentation proberved ever™~" times. We therefore have
lem as described by the following example: After a period of T8, (i) = TS (2" — 6)
time, the even-numbered leaf nodes may be allocated to flows m T aem
with weight 1, whereas the odd-numbered leaf nodes are fregheres is a constant and < § < 2m—™,
If a flow with rate 2 comes, the scheduler will not be able From (8), we have
to accept the flow even if half of the leaf nodes are free. In
order to overcome this bandwidth fragmentation problem, we TSm(5)
introduce a backgrounshapingprocedure to adjust the shape

jC
_2—m+6’( m).

of the binary trees as illustrated in Fig. 6. Thus
In Fig. 6, vy ,; and vy, are two nodes inList, TSn(i) < (12’"’2# +6(m)
which contains the unallocated nodes of the binary trees. Th — iQXnC +0(m) — oC (m)
siblings of these two nodes are denoted s, ,, andvm L' Therefore
respectively. (Note that =i+ 1 andj’ = j + 1). v n_1i 1S I I I
allocated to flowf, v;_, ., is allocated to flowng. d; = to + TS"(")E — (to + i2_n) < 0(m) x =
The Shaping Procedure Sincem < k — 1, we therefore have
marking: L
while(1){ d<0(k-1)x 5.
for (each linked listList;) -
if (exists two idle nodesy,_, ; andv:_, ;) For flow with arbitrary rate, we have the following theorem.
add swapping flags to”n AU s Theorem 2:For a flow f with rater = w = Y7, 2™
} . (0<n <ng, - ,n, <k—1)in G-3, its delay bound
swapping
if (vy,_; . Is visited first){ d% <0k —1) x L + mL L (20)
update TArraynm, vﬁ—laj’ f)’_ wherem is the number of non-zero Einary coefficientsrof
update CArray™, vii_, ;. fo); Proof: Supposeps provides bounded delay for flow
Imerg/f (ig Lir Un- “/)’d first) */ f, d is defined in Definition 1. We first show the relationship
yelse{ v, v 18 visited firsp) between ideal serve curve and real service curve under packe
update T Array”, vy, ;. 9); schedulemps.
update TArray™, vy, jrv fo); For f with reserved rate, its ideal service curve i (t —
merge ¢y j» Vi50); to) = r(t—to) (t > to). The service curve undes is denoted
} as.SPs(t —ty) (t > to). Sinceps provides bounded delay, we
Fig. 6. Shapingis a background procedure to keep the WBT trees of G-bave
in good shape. SPS(t —tg) > Sid(t —ty—T) (21)

There are two operations iBhaping a marking operation for ¢ > to. From Fig. 7, we can see th&t*(t —t,) is bounded
to addswappingflags to the siblings of the idle nodesswap- by right shifting S(t — ¢,) along the x-axis unit of time.
ping operation to be invoked after one of the marked sibling We have the following inequalities faf and 7.
nodes is scheduled by G-3. Since the swapping operation take < 22)
place immediately after an allocated node has been vigted, -
swapped flow will be better off. Hence tt&hapingprocedure and

will not affect the delay property of the swapped flow. It is r<d+ £ — £ (23)
easy to observe that there is at most one node in éagh ¢
when no swapping operation can take place. The correctness of (22) is apparent. The correctness of (23)
can be proved by contradiction: Suppase- d + % - % for
IV. PROPERTIES OFG-3 theith packet off Then the finish time of théi 4-1)th packet

A. Delay and Fairness tir1 > —+d+ = ““’L +d. We therefore havé,., > d,

: _ which results in contradlct|on
Lemma 6:For a flow f with rate2™ (0 <n < k—1)in : : _ «m oon
G-3, its delay bound Since the rate of flowf is r = w = > ,2;2™ (0 <

ny < ng,---,nym < k—1), flow f can be viewed as the
L composition ofm separate flowq f1, fa,- -, fm} with rates
< _ _. 9 ) s Jm
d_@(/{ 1) X C (19) {2"1,2”2,...,2”711,}.



B. Space and Time Complexities and Space-Time Tradeoff

Theorem 3:G-3 needsO(1) time to choose a packet for
transmission.
r C o 24 Proof: Since the value ofz;,_; of the SWM matrix
A is 1, from the property of WSS, lines 7-10 of ti8xhedule
‘ procedure will be executed once in at most 2 loops. Lines 5,
6, and 12 of the procedure can all be executed in one operation
By counting the number of linesscheduleneeds at most 9

operations to serve a flow. G-3 therefore provides stiitt)

ideal service curve
ve |

Service curve

d service curve time complexity for packet scheduling. [ |

The time complexity ofAdd.flowis O(m +k +wy), where

t, t m is the number of operations to allocate nodes for f
from the linked lists,k is the maximum number of split

Fig. 7. Service curves and their relationship. operations needed, since we need at miosplit operations

to generatem unallocated nodes of different weights, and
wy is the number of operations thapdateneeds to update
Based on Lemma 6, for flovf;, its service curves;(t —to) the TArrays. Similarly, the time complexity obelflow is

meets the following inequality: also O(m + k + wy). Since we have shown in Section lll-
. I I D thatupdatecan be performed parallelly witBchedulgthe
Si(t —to) > St —to — di — one + 6). time complexities ofAdd.flow and Del_flow can therefore be

considered a®(m+k), and sincen < k, O(m+k) = O(k).
The service curve of is the sum of the service curves of The space needed by G-3 is composed of 5 pan§:space

the m flows. Therefore to store the WSS sequencefkaspace for the SWM matrix,
‘ —m a space that is in proportion to the number of flows to store
5% (t>_ to%_ Z;jzl Silt _50) P the binary trees, a space to store théinked lists, and &*
2 2 {2"(t—to —di — 557 + )} space for the at mogt TArrays. The space complexity of G-3

=X f2m _mto)} —;21{2“9(1{ - 1) x &} is thereforeO(N) + O(2%).
—mL + Zizl{Qngﬁ} P Whenk is small (e.g.k < 24), the space needed by G-3 is
=rt—to—0(k-1)z - "= +3) affordable 2* < 16 M whenk < 24). But since2* increases
. m exponentially ag: increases, the space needed by G-3 may be
Therefore, using (_22_)193 S_ 7= 0(k— 1)% + TL N % " unacceptable wheh is large (e.g., wher = 32, 232 will be
. Though (20) is similar with (11) of RRR. (20) has ON&G). In SRR [10], we have proposed a method to trade time for
important property that (11) does not have: its value is space. A32th WSS sequence is constructed from7ah WSS

pur?iyé decided byr. Since the delay is mainly Contribme,dsequence. SRR takes one additional operation for scheglulin

by #=, users can therefore control their delay by choosing o ces the space needed frdth to 217, Similar space-
appropriater in GS S?e Section V for simulation results WQime tradeoff can be used to reduce the space of the TArrays.
demonstr_ate the significant delay differences of RRR and GF%r example, for a WBT tree of depth 32, we only expand the
due to this fagt. , . first 24 levels of the tree into a perfect binary tree and keep
Theorem 2 |nd|_cates thatt? (t —10) = 5™t — 1o —7) = the rest 8 low levels as it is. We therefore only need a TArray
r(t —to —7), G-3 is therefore a latency-rate (LR) server [19]y¢ i, 924 1o represent the perfect binary tree, @®chedule
From [19] and Theorem 2, we have the following corollary:yij take at most 8 additional operations to traverse the res
Corollary 1: When a flow with reserved rate is con- g_jevel binary sub-trees.
strained by a leaky bucketz(r) and served by a network
of M cascading G-3 nodes, its end-to-end delay bound is V. SIMULATION
We have implemented G-3, SRR, and RRRN&, [14].
In the network as depicted in Fig. 8, the bandwidths and
propagation delays dRy R, and R; R, are 10 mb/s and 10ms,
respectively. The bandwidths and delays are 100 mb/s and 1
whered(i) denotes the delay bound at nodend is calculated ms for the rest links. The MTU of the network is 200 bytes
from Theorem 2. and the reserved rate of a flow is set to its sending rate.
Schedulers that have bounded delay may not have bounde@e setup a CBR flowf; with rate 32 kb/s betweeh, and
Golestani Fairness index (also called Service Fairnessxinddy, a CBR flow f> with rate 1024 kb/s betweeh;, andd;.
SFI [8]) and Worst-case Fairness Index (WFI) [1]. G-3There are 500 flows with rate 16 kb/s betwéerto d,. There
however, provides both bounded SFI and WFI indices. Saees also two best-effort flowsf{) from h3 to ds and hy to
[11] for details. G-3 therefore provides both good fairn@sd d, to occupy the unallocated bandwidth. The two best-effort
delay properties. flows are generated from two Pareto sources with mean on

M
D<Z+ ; d(i) (24)
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VI. CONCLUSION

We have presented a G-3 packet scheduling algorithm for
fixed size packet networks. G-3 provides both stiixfl)
time complexity and bounded end-to-end delay. Both aralysi
and simulations demonstrate that G-3 provides fair banitwid
allocation and bounded end-to-end delays. G-3 demonstrate
that dynamiccircuits can be constructed efficiently in packet
networks with minimal time complexity overhead. Due to

its O(1) time complexity, G-3 can be used in high-speed

Fig. 8.

Network topology of the simulation.

networks, where time complexity is one of the most critical

factors for choosing scheduling algorithms, to providergua
and off time 100 ms, and = 1.5. The average rate of eachanteed bandwidth and bounded delay.

Pareto source is 2 mb/s, which is larger than the unallocated
bandwidth of the network.

We then measure the end-to-end delayg;0énd f> under (1]
G-3, RRR, and SRR, respectively. Fig. 9 shows the results.
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Fig. 9. End-to-end delays of; (32 kb/s) andfs (1024 kb/s) under G-3, [16]
RRR, and SRR.

Fig. 9 demonstrates that G-3 outperforms RRR and SRR]
significantly. The maximum end-to-end delaysfefand f, are
88ms and 25.6ms, which are smaller than the correspond[ﬁ%
G-3 upper bounds 122ms and 25.8ms, respectively. The worst-
case delays for botfiy andf, are large (both are 144ms) undef!9l
SRR, and the delay of; is rather large even if its reserved
rate is 1024 kb/s. The delays ¢i and fo under RRR are [20]
much larger than that under G-3. And the delayfpfunder
RRR is even much larger than that under SRR. This is beca
the m values of RRR are larger( = 6 and 11 forf; and f5,
respectively) and that: has large impact on flows with low
reserved rate. See [11] for more simulations.
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