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Abstract— In this paper, we present anO(1) time-complexity
packet scheduling algorithm which we call G-3 that provides
bounded end-to-end delay for fixed size packet networks. G-3
is built over two round-robin schedulers SRR [10] and RRR
[7] and several novel data structures. In G-3, bounded delayis
provided by evenly distributing the binary coded weight of a
flow into a Square Weight Matrix (SWM) and several Perfect
Weighted Binary Trees (PWBTs). In order to achieveO(1) time
complexity, the SWM matrix is further spread by a Weight
Spread Sequence (WSS) and each PWBT tree is spread by a
corresponding Time-Slot Sequence (TSS), respectively. G-3 then
performs packet scheduling by sequential scanning the WSS and
TSS sequences. G-3 can be implemented in high-speed packet
networks to provide bandwidth guarantee, fairness, and bounded
delay due to itsO(1) time complexity.

I. I NTRODUCTION

The Internet has become an information infrastructure of the
world. As an infrastructure, it is expected to support various
applications such as voice over IP, video conferencing, and
file sharing, which have very different bandwidth, delay, jitter,
and packet loss requirements. Many frameworks have been
proposed to enable a multi-service Internet (e.g., [2], [3]). One
of the key technologies for multi-service support is a packet
scheduler. A packet scheduler decides which flow to serve
when the output link has finished transmitting the previous
packet. A good packet scheduler should provide bounded end-
to-end delay, fair bandwidth sharing, low time complexity,
and is simple to implement. Due to the importance of packet
scheduler, packet scheduling algorithms have been studied
extensively ever since [6] and [13].

One category of packet scheduling algorithms maintain
time-stamps for each flow (e.g., Weighted Fair Queueing
(WFQ) [6]). Using WFQ as an example, the time-stamp
tagged to a flow is calculated from an ideal fluid Generalized
Processor Sharing (GPS) model. WFQ always serves the flow
with the largest time-stamp and it provides bounded end-
to-end delay [15]. The time complexity of WFQ isO(N),
where N is the number of active flows in the scheduler.
Many schemes were then proposed to either reduce time-
complexity or improve performance of WFQ, e.g., [1], [5],
[8], [9], [18]. Most of these algorithms provide bounded
end-to-end delay and all of them have at leastO(logN)
time complexity.O(logN), however, does not scale well for
high-speed networks which only have nanoseconds to make
scheduling decisions. For example, for a 40 Gb/s (OC-768)
link, a packet of size 200 bytes will be transmitted in 0.04
us. When N = 106, log2N = 20, which means that a

WFQ scheduler must perform each comparison in less than
2 nanoseconds!

Another category of algorithms use round-robin instead of
time-stamp to perform scheduling (e.g., RRR [7], SRR [10],
Aliquem [12], and DRR [17]). Due to the simplicity nature
of round-robin, most of the round-robin schedulers haveO(1)
time-complexity. But they generally cannot provide bounded
delay.

Recently, there emerged new scheduling algorithms by
integrating time-stamp and round-robin schemes (GR3 [4],
STRR [16], FRR [21]). These algorithms divide flows into
different groups according to their weights, and use time-
stamp based schedulers for inter-group scheduling and round-
robin based schedulers for intra-group scheduling. However,
the number of groups in these algorithms is at leastO(logN),
these algorithms therefore can hardly be consideredO(1) time
complexity schemes. Moreover, the delays of these schemes
are either not clear or in proportion toN .

Since all the proposed schemes have eitherO(logN) time
complexity and bounded delay orO(1) time complexity and
unbounded delay, it is therefore natural to ask ifO(1) time
complexity schedulers cannot provide bounded delay. In [20],
the authors showed that under the comparison computing
model, which is used by the time-stamp based schemes,
the lower time complexity bound to provide bounded delay
is Ω(logN). However, round-robin schedulers donot use
comparison for scheduling, it is therefore still unknown ifthere
existsO(1) time complexity, non-time-stamp based schedulers
that provide bounded delay.

In this paper, we propose a round-robin packet scheduler,
which we call G-3, that has bothO(1) time complexity and
bounded delay for fixed size packet networks. G-3 is built
over two previously proposed schedulers SRR [10], which has
O(1) time complexity but unbounded delay, and RRR [7],
which provides good delay property but has time complexity
comparable toO(logN). The novelty of G-3 lies in several
newly introduced data structures. In G-3, each flow is assigned
a weight that is in proportion to its reserved rate. The weight
is represented in its binary form and distributed into a Square
Weight Matrix (SWM) and several Perfect Weighted Binary
Trees (PWBT). The weights of the flows are evenly distributed
into SWM and PWBTs, so that bounded delay is achieved. G-
3 then spreads the SWM matrix by a Weight Spread Sequence
(WSS, which is introduced in SRR) and each PWBT tree by
a Time-Slot Sequence (TSS). G-3 achievesO(1) time com-
plexity by reducing packet scheduling to sequential scanning



the WSS and TSS sequences. We also have designed variants
of G-3 to handle variable packet size (see [11]), these variants
are not further discussed in this paper due to space limitation.
To the best of our knowledge, G-3 is the firstO(1) time-
complexity scheduler that provides bounded end-to-end delay.

The rest of the paper is organized as follows. In Section
II, we overview SRR and RRR and provide analytical delay
bounds for SRR. In Section III, we introduce several key data
structures and then formally present G-3. The delay and space-
time complexities of G-3 are analyzed in Section IV. Section
V demonstrates the delay property of G-3 using simulations.
Section VI concludes the paper.

II. SMOOTHED ROUND ROBIN AND RECURSIVE ROUND

ROBIN

We assume there areN flows, numbered fromf0 to fN−1,
in the scheduler. The reserved rate for flowfi is ri. A flow
fi is assigned a weightwi which is in proportion to its rate
ri. Without losing generality, we assumewi = ri. We assume
packets are of the same sizeL.

In an ideal scheduler, for a flowf with reserved rater, the
total bytes that have been transmitted at timet is Sid(t−t0) =
r(t−t0), wheret0 < t is the arrival time of flowf . Sid(t−t0)
may be less thanr(t − t0) if the arrival bits of a flow is less
than r(t − t0). If this is the case, the flow can be split into
several flows which are non-overlapped in their time duration,
each with the propertySid(t − t0) = r(t − t0). It is easy to
observe that, in the ideal scheduler, theith (i > 0) packet of
f will be finished transmission at timetidi = t0 + i×L

r
. We

further denote the bits transmitted forf at time t in a real
packet schedulerps as Sps(t − t0). We call Sid(t − t0) the
ideal service curve off andSps(t − t0) the service curve of
f underps, respectively.

Definition 1: A packet schedulerps provides bounded de-
lay for flow f , if the finish timetps

i (i > 0) satisfies

tps
i ≤ t0 +

i × L

r
+ dps (1)

wherer is the reserved rate off , anddps is defined as

dps = max
i>0

{dps
i } = max

i>0
{tps

i − tidi } ≤ const (2)

whereconst is a constant that is independent of the number
of active flowsN . Definition 1 is identical to say thatSps(t−
t0) ≥ Sid(t− t0 − τ), whereτ is a constant. The adoption of
Definition 1 can simplify the analysis in the rest of the paper.
In next subsections, we briefly overview SRR and RRR and
provide several new results of SRR which will be used in
analyzing G-3.

A. Overview of the Smoothed Round Robin

There are two key data structures in SRR [10]: Weight
Spread Sequence (WSS) and Weight Matrix (WM).

In SRR, the weight offi is represented aswi = ri =
∑k−1

j=0{ai,j2
j}. The binary coefficientsai,j of the N active

flows are used to form a Weight Matrix as below.

WM =











a0,(k−1) a0,(k−2) · · · a0,0

a1,(k−1) a1,(k−2) · · · a1,0

...
...

.. .
...

aN−1,(k−1) aN−1,(k−2) · · · aN−1,0











(3)

whereai,j ∈ {0, 1}, 0 ≤ i ≤ N − 1, and0 ≤ j ≤ k − 1. The
columns of the Weight Matrix are numbered from left to right
as colk−1, colk−2, · · ·, col0, respectively. We further denote
yj =

∑N−1
i=0 ai,j for 0 ≤ j ≤ k − 1. For this WM matrix, we

have
0 ≤ yj ≤ N (4)

and
N−1
∑

i=0

ri =
N−1
∑

i=0

k−1
∑

j=0

{ai,j2
j} ≤ C (5)

whereC is the bandwidth of the output link.
In SRR, the Weight Matrix is then scanned by a specially

designed Weight Spread Sequence (WSS). A set of WSS is
defined as

WSSk = {ak
i |1 ≤ i ≤ 2k − 1} (6)

whereak
i is defined recursively as

ak
i =







ak−1
i , 1 ≤ i ≤ 2k−1 − 1

k, i = 2k−1

ak−1
i−2k−1 , 2k−1 < i ≤ 2k − 1

(7)

for k > 1, and WSS1 = {a1
1 = 1}. We call k the order

of sequence WSSk. It is apparent that the set of elements of
WSSk is {1, 2, 3, · · · , k} and the size of WSSk is 2k − 1.

SRR then scans the terms of WSS cyclically. When the
value of the current scanned term isj, columnk − j of the
Weight Matrix is selected. For each occurrenceai,k−j 6= 0 in
this column, packet fromfi is then transmitted. Due to the
desired properties of WSS and WM, flows are served fairly
according to their weights.

Readers are referred to [10] for details of SRR. Though
SRR has strictO(1) time complexity for packet scheduling,
it does not provide bounded delay. We will show analytically
that the delay bound of SRR is in proportion to the number
of active flows in next subsection (see Theorem 1).

B. Delay property of SRR

In SRR, when a non-zero termai,j of the Weight Matrix
is visited, we say that the corresponding flowfi is assigned
a time-slot. We use a variableTS(t) to count the number of
time-slots assigned in SRR at timet. TS is set to 0 when
SRR starts (i.e.,TS(0) = 0), and is increased by 1 when a
non-zero term of the Weight Matrix is visited.

Suppose a flowf with weight 2n, i.e., r = 2n, arrives at
the scheduler at timet0, and the corresponding elementk−n
in WSS has been scannedj times att0. We denote the value
of TS at the time whenf has been servedi times asTS(ti).

Definition 2: We defineTSn(i) = TS(ti)−TS(t0), which
is the number of assigned time-slots in SRR from the time
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when flow f (with rate 2n) arrives to the time whenf is
servedi (i ≥ 1) times.

As to TSn(i), we have lemma as follows.
Lemma 1:For a flowf with rate2n in SRR, from the time

whenf arrives at the scheduler to the time whenf is served
i times, the value ofTSn(i) is bounded by

TSn(i) ≤
iC

2n
+ θ(n)N. (8)

whereθ(n) < n. The proof of Lemma 1 is given in [11] and
is omitted here due to space limitation. From Lemma 1, we
have theorem as follows.

Theorem 1:In SRR, for a flowf with rate r = w = 2n

(0 ≤ n < k), its delay bound

dsrr ≤ θ(n) × N ×
L

C
. (9)

Proof: The time whenf finishes serving itsith packet,
ti, is

ti = t0 + TSn(i) L
C

≤ t0 + iL
2n + θ(n) × N × L

C

Therefore

dsrr
i = ti − (t0 + iL

2n ) ≤ θ(n) × N × L
C

for all i > 0.
In fact, we have lemma for flows with arbitrary rates as

follows.
Lemma 2: In SRR, for a flow f with rate r = w =

∑m
i=1 2ni (0 ≤ n1 < n2, · · · , < nm ≤ k− 1), its delay bound

dsrr < θ(nm) × N ×
L

C
+ (m − 1)

L

r
(10)

wherem is the number of non-zero binary coefficients ofr.
The proof of Lemma 2 is also given in [11]. Both Theorem

1 and Lemma 2 show thatdsrr is in proportion toN . SRR
therefore does not provide bounded delay.

C. Overview of the Recursive Round Robin

In RRR [7], the output bandwidth is normalized to 1, and
the weight of a flow isw = r

C
. The normalized weight is

further represented asw ≈
∑g

j=1 bj2
−j , wherebj ∈ {0, 1} is

the coefficient ofw.
The core data structure of RRR is a Weighted Binary Tree

(WBT). This WBT tree hasg + 1 levels, with root nodev0,0

at level 0, and the two children ofv0,0, namelyv1,0 andv1,1,
at level 1, etc. A node of the WBT tree is denoted asvl,i,
wherel indicates its level andi represents its id at levell. We
have0 ≤ l ≤ g and 0 ≤ i < 2l. An intermediate nodevl,i

has a left childvl+1,2i and a right childvl+1,2i+1. See Fig.
1 for an example of such a WBT tree. A node at levell of
the WBT tree is associated with a weight2−l. The root node
v0,0, therefore, has weight 1, and its childrenv1,0 and v1,1

have weights12 , respectively.
We use an example as illustrated in Fig. 1 to show how

the WBT tree is formed. Suppose the scheduler is idle at the
beginning (i.e., the WBT tree has only onev0,0 node), then a
flow f1 with rate 1

16 comes. Since the only unallocated node
is v0,0, RRR splits it into two nodesv1,0 andv1,1. Since the

weight of v1,0, 1
2 , is larger than1

16 , RRR then splitsv1,0 into
v2,0 andv2,1. Similarly, v2,0 is split into v3,0 andv3,1, v3,0 is
split into v4,0 andv4,1. Since the weight ofv4,0 is 1

16 , v4,0 is
therefore allocated tof1.

Fig. 1 shows the WBT tree after flowsf1 − f4 have been
added. The weights of the flows arew1 = 1

16 , w2 = 1
8 , w3 =

w4 = 1
4 , respectively. In RRR, the unallocated leaf nodes of

the WBT tree are allocated to a special flowf0, which is an
idle flow to consume the unused bandwidth. After adding these
flows in, v4,0, v3,1, v2,1, and v2,2 are allocated to flowsf1,
f2, f3, f4, respectively.v4,1 andv2,3 are allocated to the idle
flow f0.

Fig. 1. An example to illustrate how RRR works. The core data structure
of RRR is a Weighted Binary Tree (WBT).

After the formation of the WBT tree, scheduling is per-
formed as illustrated in Fig. 2. Each intermediate nodevi,j in
the WBT tree is associated with a boolean variableflip(vi,j).
flip(vi,j) is initialized to 0 and changes its value each time
vi,j is visited.

The scheduling procedure of RRR:
1 while (the scheduler in busy-period){
2 v = v0,0;
3 while (v is an intermediate node){
4 if (flip(v) == 0)
5 tmp = left child(v);
6 else
7 tmp = right child(v);
8 flip(v) = flip(v) XOR 1;
9 v = tmp;
10 }
11 f = flow id that corresponds tov;
12 ServeFlow (f );
13 }

Fig. 2. The scheduling procedure of RRR.

Using the scheduling procedure to serve the tree in Fig. 1,
we get the following output service sequence in one round:

f1f4f3f0f2f4f3f0f0f4f3f0f2f4f3f0.

In [7], the authors showed that, in RRR, for a flowf with
weight w =

∑m

i=1 2−ni (0 < n1 < n2, · · · , < nm ≤ g), its

3



delay bound

drrr ≤
m × L

r
(11)

wherem is the number of non-zero coefficients ofw.
RRR has two issues. First, the value ofm depends on both

r andC. Since the bandwidth may not be known in advance,
RRR hence cannot control the value ofm to small values. For
instance, for a flow with rater = 32kb/s, C = 10mb/s, and
g = 20, its m = 6. When L = 200 bytes, the delay bound
drrr is as large as 300 ms!

Second and most importantly, the time complexity of RRR
is high. According to Fig. 2, RRR needsg steps to select
a packet, whereg is the depth of the WBT tree. The time
complexity for packet scheduling is thereforeg. This time
complexity does not have advantage over the time-stamp based
algorithms, whose time complexity is generallyO(logN),
sinceg is at least as large aslog2N . A naive approach to re-
duce the time-complexity of RRR is to pre-compute and store
the scheduling sequence in advance. This approach, however,
does not solve the problem since the time complexity of pre-
computing is as high asO(C) (≫N ) and pre-computing needs
to be performed for each flow arrival and departure.

III. T HE G-3 PACKET SCHEDULING ALGORITHM

Before we present G-3, we first introduce several novel data
structures: Square Weight Matrix (SWM), Time-Slot Sequence
(TSS), and Time-slot Array (TArray).

A. Square Weight Matrix

Definition 3: A k × k weight matrix is a Square Weight
Matrix (SWM), if it can be represented as

SWM =











0 0 · · · 0 a0

0 0 · · · a1 0
...

...
. . .

...
ak−1 0 · · · 0 0











(12)

whereai ∈ {0, 1} andak−1 = 1.
Lemma 3:Suppose a SWM is scheduled by SRR, then for

a flow f with rate2n (0 ≤ n ≤ k− 1) in this SWM, its delay
bound

d ≤ θ(n) ×
L

C
≤ θ(k − 1) ×

L

C
. (13)

This lemma follows directly from Theorem 1, since the sum
of each column of a SWMyj ≤ 1 (0 ≤ j ≤ k − 1).

B. Time-Slot Sequence and Time-Slot Array

The binary tree used in RRR provides good scheduling out-
put, but experiences scheduling time complexity comparable to
O(logN). In order to reduce time complexity, we first extend
the binary tree of RRR into a Perfect Weighted Binary Tree
(PWBT) by adding descendent nodes to the leaf nodes that
are not at the lowest level. Fig. 3 shows such a PWBT tree
constructed from the binary tree of Fig. 1. An intermediate
node of a PWBT tree is said toown a leaf node if the leaf
node is its descendent. For example, in Fig. 3, nodev2,1 owns
v4,4, v4,5, v4,6, and v4,7. When an intermediate node in the
PWBT tree is allocated to a flowf , all the leaf nodes owned

by that node are also allocated tof . In Fig. 3, since nodev2,1

is allocated tof3, thenv4,4, v4,5, v4,6, andv4,7 are allocated
to f3 consequently.

Fig. 3. The Perfect Weighted Binary Tree (PWBT) constructedfrom the
binary tree of RRR.

From the scheduling procedure, RRR will first visitv4,0,
then visitsv4,8, v4,4, · · ·, v4,7, v4,15. That is, the indices of
the visited leaf nodes can be described as follows.

0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15, (14)

In fact, the above sequence can be described by a newly
introduced set of sequences which we call Time-Slot Sequence
(TSS). TSS is defined as follows.

Definition 4: A set of Time-Slot Sequence (TSS) is defined
as

TSSn = {bn
i |0 ≤ i < 2n} (15)

wheren ≥ 0 is the order of the corresponding TSS sequence
and bn

i is the ith term of TSSn, and TSS0 = {b0
0 = 0}. The

ith term of TSSn, bn
i (n > 0), is defined recursively as

bn
i =

{

2bn−1
i , 0 ≤ i < 2n−1

2bn−1
i−2n−1 + 1, 2n−1 ≤ i < 2n (16)

From Definition 4, we get TSS1={0, 1}, TSS2={0, 2, 1, 3},
TSS3={0, 4, 2, 6, 1, 5, 3, 7}, and TSS4 is shown in (14).

Definition 5: For a n bits binary number i =
bn−1bn−2 · · · b0, where bj ∈ {0, 1} and 0 ≤ j < n, its
reversed binary number is defined as

RB(i, n) = b0b1 · · · bn−1. (17)
From the definition, we getRB(011b, 3) = 110b = 6 and

RB(0001b, 4) = 1000b = 8.
The following lemma holds for TSS.
Lemma 4:For anth TSS sequence, the value of itsith term

bn
i is

bn
i = RB(i, n) (18)

wheren > 0 and0 ≤ i < 2n.
Proof: We prove this lemma by induction.

1) It is obvious to verify that the lemma is correct when
n = 1.

2) Suppose the lemma is correct for TSSn, i.e., for i =
bn−1bn−2 · · · b0, bn

i = RB(i, n) = b0b1 · · · bn−1.
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Then for TSSn+1, when 0 ≤ i < 2n, bn+1
i = 2bn

i =
b0b1 · · · bn−10, which is exactlyRB(i, n + 1). When 2n ≤
i+2n < 2n+1, bn+1

i+2n = 2bn
i +1, where0 ≤ i < 2n. Therefore

bn+1
i+2n = b0b1 · · · bn−11 = RB(i + 2n, n + 1).

Lemma 4 therefore follows by induction.
For a nodevl,i of a PWBT tree of depthn (0 ≤ l ≤ n and

0 ≤ i < 2l), the set of leaf nodes that owned byvl,i is then
{vn,x|i2

n−l ≤ x < (i+1)2n−l}. We can expressi in its binary
form asbl−1bl−2 · · · b0. The indexes of its leaf nodes can then
be expressed asbl−1bl−2 · · · b000 · · · 0, bl−1bl−2 · · · b000 · · · 1,
· · ·, bl−1bl−2 · · · b011 · · · 1. The corresponding reversed binary
numbers of the indexes are therefore00 · · · 0b0b1 · · · bl−1,
10 · · · 0b0b1 · · · bl−1, · · ·, 11 · · · 1b0b1 · · · bl−1. The set of
the reversed binary numbers can therefore be denoted as
RBS(vl,i) = {rbx|0 ≤ x < 2n−l}, where rbx = x2l +
b0b1 · · · bl−1. We therefore get lemma as follows.

Lemma 5:The terms ofRBS(vl,i) are distributed evenly
in thenth TSS (n ≥ l), and the distance between two adjacent
terms ofRBS(vl,i) is 2l.

Based on the idea of TSS, we further introduce an array
which we call Time-Slot Array (TArray). For a PWBT tree
with level n, there is a corresponding time-slot array TArrayn

of size2n. The value of TArrayn is set as follows.
for (i = 0; i < 2n; i + +)

TArrayn[i] = id of the flow that occupiesvn,RB(i,n);
For the PWBT tree in Fig. 3, its corresponding time-slot

array is therefore

TArray4 = {f1f4f3f0f2f4f3f0f0f4f3f0f2f4f3f0}.

This TArray exactly describes the service sequence of RRR.
Hence, with the introducing of time-slot sequence and time-
slot array, we can directly decide which flow to serve without
traversing the binary tree from root to leaf.

C. An example to show how G-3 works

Before we formally present G-3, we use an example to illus-
trate how the newly introduced data structures are integrated
together. Suppose we have 7 flows numbered fromf0 to f6

with rate 1; 2 flowsf7 andf8 with rate 2; 1 flowf9 with rate
4. The bandwidth of the output link isC = 15.

The bandwidth can be expressed asC = a3 × 23 + a2 ×
22 + a1 × 21 + a0 × 20, where the binary coefficientsa3 =
a2 = a1 = a0 = 1. The coefficients are then used to form a
SWM matrix as below.

SWM =









0 0 0 a0

0 0 a1 0
0 a2 0 0
a3 0 0 0









.

The WSS that corresponds to this SWM is

WSS4 = {1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1}.

For each binary coefficientai(0 ≤ i ≤ 3), there is a PWBT
treeTreei. For eachTreei, there is a correspondingTArrayi

as below.

TArray3 = {f7, f9, f8, f9, f7, f9, f8, f9},
TArray2 = {f3, f5, f4, f6},
TArray1 = {f1, f2},
TArray0 = {f0}.

These 4 TArrays are formed from the 4 PWBT trees as
illustrated in Fig. 4. The detailed procedure of how to generate
the TArrays has been explained in Section III-B. There is
a pointerpw points to the current scanned position of the
WSS4 sequence. For eachTArrayi, there is also a pointer
pi points to the current scanned position ofTArrayi. pw and
the pointers (pi) of the TArrays are initialized to point to their
first terms, respectively.

Fig. 4. An example to show how G-3 works.

G-3 then scans the WSS4 sequence cyclically. When the
current term ofWSS4 is i, column j = 4 − i of the
SWM is selected, andTArrayj is selected consequently. Flow
f = TArrayj [pj ] is then served. After that,pw and pj are
increased by one to point to their next terms, respectively.The
output service sequence of G-3 in one round is therefore

f7f3f9f1f8f5f9f0f7f4f9f2f8f6f9.

For the same set of flows, the service sequence of SRR is

f9f7f8f9f0f1f2f3f4f5f6f9f7f8f9.

These two service sequences show that G-3 produces a
much smoother output than SRR. For example, as tof9, the
distances between two successive appearances off9 are 3, 4,
4, and 4 in G-3, whereas the distances are 1, 3, 8, and 3 in
SRR.

D. Description of G-3

In G-3, we assume that a flow is added into the scheduler
by a call admission controller (CAC) and removed from the
scheduler by a signalling protocol, and packets are classified
to different flows by a packet classifier. A flow with packets
in the scheduler is said to bebackloggedand a flow with no
packet is said to benon-backlogged. In G-3, we allocate the
unallocated bandwidth to the best-effort flowf0.
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In G-3, the bandwidth of the output link C is denoted as
C =

∑h

i=1 2ni , where0 ≤ n1 < n2, · · · , nh = ⌊log2C⌋ and
h ≤ ⌊log2C⌋+1 is the number of non-zero binary coefficients
of C. The weight of a flowf is its reserved rate, i.e.,w = r.

There are four major data structures in G-3: A SWM matrix
as defined in (12) to represent the binary coefficients of
the output bandwidthC; a kth WSS sequence, wherek =
⌊log2C⌋ + 1; h binary trees{Treen1 , T reen2, · · · , T reenh}
with Treeni represents2ni of C (the root nodevni

0,0 of
Treeni therefore has weight2ni); and h time-slot arrays
{TArrayn1 , TArrayn2 , · · · , TArraynh}, to spread the cor-
respondingh binary trees. There is a pointerpw points to
the current scanned term of WSS, and for eachTArrayi,
there is a pointerpi points to the current scanned term of
TArrayi. These points are initialized to point to their first
terms, respectively.

There arek linked lists, denoted as{List0, List1, · · ·,
Listk−1}. These lists are used to track the unallocated leaves
of theh binary trees. For eachTreei, the correspondingListi
is initialized to have a nodevi

0,0, wherevi
0,0 is the root of

Treei. We will show later that when the WBT trees are in
good shape, each list has at most one node.

Fig. 5 gives the formal description of G-3. There are 3 sub-
procedures: AScheduleprocedure to decide which flow to
serve; anAdd flow to add an incoming flow into the scheduler;
and aDel flow to remove a flow when the flow leaves the
system. Note that when a flow becomes non-backlogged,
Del flowwill notbe invoked.Scheduleis performed per-packet
level, whereasAdd flowandDel floware invoked only for flow
arrivals and departures.

The Scheduleprocedure is quite simple: When there are
packets in the system (line 4),Schedulescans the WSS
sequence (line 5). If the corresponding term of the SWM is
not 0 (line 6), it then selects the corresponding TArray and
retrieves the flow id (line 7). If the selected flow is backlogged,
it then usesServeFlowto transmit a packet for that flow (line
8). ServeFlow(f ) is to dequeue the first packet fromf and
then transmit the packet. If the selected flow is idle, it then
executesidle sched. In G-3, idle schedsimply assigns the idle
time-slots to the best-effort flowf0. Line 10 and line 12 are to
update the pointerspw of WSS andpi of TArrayi, respectively.

Add flow is invoked when a new flow is accepted by the
CAC controller. For each of them non-zero binary coefficient,
Add flow tries to allocate a node from the binary trees (line 14
and 15). Using2nj as an example,Add flow first tries to get
a free node from thek linked lists (get free node, line 16).
If it cannot get a free node,Add flow fails and return (line
17). If the weight of the returned nodevn

l,i is larger than2nj ,
split is called (line 18 and 19).split first dividesvn

l,i to vn
l+1,2i

andvn
l+1,2i+1. If the weight ofvn

l+1,2i is still larger than2nj ,
split then recursively dividesvn

l+1,2i, etc. The weight of the
returned node is therefore2nj and the node is then allocated
to f . After that, the corresponding TArray is updated (line 20).

When a flowf leaves the scheduler,Del flow is called. For
each node of the binary trees that allocated tof , Del flow
updates the corresponding TArray (i.e., set the terms that

Schedule:
1 integer:i, j;
2 pw = 1;
3 for (i = 0; i < k; i + +) pi = 0;
4 while (the scheduler in busy-period){
5 i = k − WSSk[pw];
6 if (ai == 1) {
7 f = TArrayi[pi];
8 if (f is backlogged) ServeF low(f);
9 elseidle sched( );
10 pi = (pi + 1)mod 2i;
11 }
12 pw = 1 + pw mod (2k − 1);
13 }
Add flow(f, w f):
14 wf =

∑m

j=1 2nj , (0 ≤ n1 < n2 < · · · < nm < k);
15 for (j = m; j ≥ 1; j −−){
16 vn

l,i = get free node(nj);
17 if (vn

l,i == NULL) return FALSE;
18 if ( 2n−l > 2nj )
19 vn

l,i = split(vn
l,i, nj);

20 update (TArrayn, vn
l,i, f );

21 }
22 return TRUE;
Del flow(f):
23 for (each nodevn

l,i assigned tof ) {
24 update (TArrayn, vn

l,i, f0);
25 if ( its sibling vn

l,i′ is idle)
26 merge(vn

l,i, vn
l,i′ )

27 else
28 addvn

l,i into Listn−l;
29 }

Fig. 5. Description of G-3. G-3 has 3 major components:Scheduledecides
which flow to serve,Add flow adds a new flow into the scheduler, andDel flow
removes a flow from the scheduler.

occupied byf to f0) (line 24). If the sibling node of the
release node is also idle,mergeoperation is performed (line
26), elseDel flow just adds the node into the corresponding
linked list (line 28).mergeis the reverse operation ofsplit.

In both Del flow andAdd flow, update(TArrayn, vn
l,i, f )

is used to update TArrayn when a flow arrives or departures.
The number of terms in TArrayn that corresponding to node
vn

l,i is 2n−l. The number of terms that needs update in all
the TArrays is thereforewf . In G-3, we can further reduce
the time-complexity ofupdate by carrying outupdate and
Scheduleparallelly as follows. We first update the term of
TArray that will be firstly visited bySchedule, then update
the rest terms sequentially.update therefore only needs to
update the terms beforeSchedulevisits them. G-3 visits the
leaf nodes ofvn(l, i) as described by set RBS(vn

l,i) (which
is defined in Section III-B). The first term of RBS(vn

l,i) that
will be visited byScheduleis x = {RB(i, n) + y2l}mod 2n,
wherey = ⌈pn−RB(i,n)

2l ⌉. Theupdateoperation can therefore
be carried out as follows.

update (TArrayn, vn
l,i, f ):
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for (j = 0; j < 2n−l; j + +){
tmp = (x + j2l) mod 2n;
TArrayn[tmp] = f ;

}
Note that G-3 may face the bandwidth fragmentation prob-

lem as described by the following example: After a period of
time, the even-numbered leaf nodes may be allocated to flows
with weight 1, whereas the odd-numbered leaf nodes are free.
If a flow with rate 2 comes, the scheduler will not be able
to accept the flow even if half of the leaf nodes are free. In
order to overcome this bandwidth fragmentation problem, we
introduce a backgroundShapingprocedure to adjust the shape
of the binary trees as illustrated in Fig. 6.

In Fig. 6, vn
n−l,i and vm

m−l,j are two nodes inListl,
which contains the unallocated nodes of the binary trees. The
siblings of these two nodes are denoted asvn

n−l,i′ andvm
m−l,j′ ,

respectively. (Note thati′ = i ± 1 and j′ = j ± 1). vn
n−l,i′ is

allocated to flowf , vm
m−l,j′ is allocated to flowg.

The Shaping Procedure
marking :

while(1){
for (each linked listListl)

if (exists two idle nodesvn
n−l,i andvm

m−l,j)
addswapping flags tovn

n−l,i′ andvm
m−l,j′ ;

}
swapping:

if (vn
n−l,i′ is visited first){

update (TArraym, vm
m−l,j , f );

update (TArrayn, vn
n−l,i′ , f0);

merge (vn
n−l,i, vn

n−l,i′ );
}else{ /*vm

m−l,j′ is visited first) */
update (TArrayn, vn

n−l,i, g);
update (TArraym, vm

m−l,j′ , f0);
merge (vm

m−l,j , vm
m−l,j′ );

}

Fig. 6. Shapingis a background procedure to keep the WBT trees of G-3
in good shape.

There are two operations inShaping: a marking operation
to addswappingflags to the siblings of the idle nodes, aswap-
ping operation to be invoked after one of the marked sibling
nodes is scheduled by G-3. Since the swapping operation takes
place immediately after an allocated node has been visited,the
swapped flow will be better off. Hence theShapingprocedure
will not affect the delay property of the swapped flow. It is
easy to observe that there is at most one node in eachListl
when no swapping operation can take place.

IV. PROPERTIES OFG-3

A. Delay and Fairness

Lemma 6:For a flow f with rate 2n (0 ≤ n ≤ k − 1) in
G-3, its delay bound

d ≤ θ(k − 1) ×
L

C
. (19)

Proof: Based on the description of G-3, flowf must
be represented by one of the termsam(m ≥ n) of the SWM
matrix.

From Lemma 5, flowf will be served once whenam is
served every2m−n times. We therefore have

TSn(i) = TSm(i2m−n − δ)

whereδ is a constant and0 ≤ δ < 2m−n.
From (8), we have

TSm(j) ≤
jC

2m
+ θ(m).

Thus

TSn(i) ≤ (i2m−n
−δ)C

2m + θ(m)
= i×C

2n + θ(m) − δC
2m ≤ i×C

2n + θ(m)

Therefore

di = t0 + TSn(i)
L

C
− (t0 + i

L

2n
) ≤ θ(m) ×

L

C

Sincem ≤ k − 1, we therefore have

d ≤ θ(k − 1) ×
L

C
.

For flow with arbitrary rate, we have the following theorem.
Theorem 2:For a flow f with rate r = w =

∑m

l=1 2nl

(0 ≤ n1 < n2, · · · , nm ≤ k − 1) in G-3, its delay bound

dg3 ≤ θ(k − 1) ×
L

C
+

mL

r
−

L

C
(20)

wherem is the number of non-zero binary coefficients ofr.
Proof: Supposeps provides bounded delayd for flow

f , d is defined in Definition 1. We first show the relationship
between ideal serve curve and real service curve under packet
schedulerps.

For f with reserved rater, its ideal service curve isSid(t−
t0) = r(t−t0) (t ≥ t0). The service curve underps is denoted
asSps(t − t0) (t ≥ t0). Sinceps provides bounded delay, we
have

Sps(t − t0) ≥ Sid(t − t0 − τ) (21)

for t > t0. From Fig. 7, we can see thatSps(t−t0) is bounded
by right shiftingSid(t − t0) along the x-axisτ unit of time.

We have the following inequalities ford andτ .

d ≤ τ (22)

and
τ ≤ d +

L

r
−

L

C
. (23)

The correctness of (22) is apparent. The correctness of (23)
can be proved by contradiction: Supposeτ > d + L

r
− L

C
for

theith packet off . Then the finish time of the(i+1)th packet
ti+1 > iL

r
+d+ L

r
= (i+1)L

r
+d. We therefore havedi+1 > d,

which results in contradiction.
Since the rate of flowf is r = w =

∑m

l=1 2nl (0 ≤
n1 < n2, · · · , nm ≤ k − 1), flow f can be viewed as the
composition ofm separate flows{f1, f2, · · · , fm} with rates
{2n1, 2n2 , · · · , 2nm}.
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Fig. 7. Service curves and their relationship.

Based on Lemma 6, for flowfi, its service curveSi(t− t0)
meets the following inequality:

Si(t − t0) ≥ Sid
i (t − t0 − di −

L

2ni
+

L

C
).

The service curve off is the sum of the service curves of
the m flows. Therefore

Sg3(t − t0) =
∑m

i=1 Si(t − t0)
≥

∑m

i=1{2
ni(t − t0 − di −

L
2ni

+ L
C

)}
=

∑m

i=1{2
ni(t − t0)} −

∑m

i=1{2
niθ(k − 1) × L

C
}

−mL +
∑m

i=1{2
ni L

C
}

= r(t − t0 − θ(k − 1) L
C
− mL

r
+ L

C
)

Therefore, using (22),dg3 ≤ τ ≤ θ(k− 1) L
C

+ mL
r

− L
C

.
Though (20) is similar with (11) of RRR. (20) has one

important property that (11) does not have: itsm value is
purely decided byr. Since the delay is mainly contributed
by mL

r
, users can therefore control their delay by choosing

appropriater in G-3. See Section V for simulation results to
demonstrate the significant delay differences of RRR and G-3
due to this fact.

Theorem 2 indicates thatSg3(t − t0) ≥ Sid(t − t0 − τ) =
r(t− t0 − τ), G-3 is therefore a latency-rate (LR) server [19].
From [19] and Theorem 2, we have the following corollary:

Corollary 1: When a flow with reserved rater is con-
strained by a leaky bucket (σ, r) and served by a network
of M cascading G-3 nodes, its end-to-end delay bound is

D ≤
σ

r
+

M
∑

i=1

d(i) (24)

whered(i) denotes the delay bound at nodei and is calculated
from Theorem 2.

Schedulers that have bounded delay may not have bounded
Golestani Fairness index (also called Service Fairness Index,
SFI [8]) and Worst-case Fairness Index (WFI) [1]. G-3,
however, provides both bounded SFI and WFI indices. See
[11] for details. G-3 therefore provides both good fairnessand
delay properties.

B. Space and Time Complexities and Space-Time Tradeoff

Theorem 3:G-3 needsO(1) time to choose a packet for
transmission.

Proof: Since the value ofak−1 of the SWM matrix
is 1, from the property of WSS, lines 7-10 of theSchedule
procedure will be executed once in at most 2 loops. Lines 5,
6, and 12 of the procedure can all be executed in one operation.
By counting the number of lines,Scheduleneeds at most 9
operations to serve a flow. G-3 therefore provides strictO(1)
time complexity for packet scheduling.

The time complexity ofAdd flow is O(m+k +wf ), where
m is the number of operations to allocatem nodes forf
from the linked lists,k is the maximum number of split
operations needed, since we need at mostk split operations
to generatem unallocated nodes of different weights, and
wf is the number of operations thatupdateneeds to update
the TArrays. Similarly, the time complexity ofDel flow is
also O(m + k + wf ). Since we have shown in Section III-
D that updatecan be performed parallelly withSchedule, the
time complexities ofAdd flow and Del flow can therefore be
considered asO(m+k), and sincem ≤ k, O(m+k) = O(k).

The space needed by G-3 is composed of 5 parts: a2k space
to store the WSS sequence, ak space for the SWM matrix,
a space that is in proportion to the number of flows to store
the binary trees, a space to store thek linked lists, and a2k

space for the at mostk TArrays. The space complexity of G-3
is thereforeO(N) + O(2k).

Whenk is small (e.g.k ≤ 24), the space needed by G-3 is
affordable (2k ≤ 16M whenk ≤ 24). But since2k increases
exponentially ask increases, the space needed by G-3 may be
unacceptable whenk is large (e.g., whenk = 32, 232 will be
4G). In SRR [10], we have proposed a method to trade time for
space. A32th WSS sequence is constructed from a17th WSS
sequence. SRR takes one additional operation for scheduling,
but reduces the space needed from232 to 217. Similar space-
time tradeoff can be used to reduce the space of the TArrays.
For example, for a WBT tree of depth 32, we only expand the
first 24 levels of the tree into a perfect binary tree and keep
the rest 8 low levels as it is. We therefore only need a TArray
of size 224 to represent the perfect binary tree, andSchedule
will take at most 8 additional operations to traverse the rest
8-level binary sub-trees.

V. SIMULATION

We have implemented G-3, SRR, and RRR inNS2 [14].
In the network as depicted in Fig. 8, the bandwidths and
propagation delays ofR0R1 andR1R2 are 10 mb/s and 10ms,
respectively. The bandwidths and delays are 100 mb/s and 1
ms for the rest links. The MTU of the network is 200 bytes
and the reserved rate of a flow is set to its sending rate.

We setup a CBR flowf1 with rate 32 kb/s betweenh0 and
d0, a CBR flow f2 with rate 1024 kb/s betweenh1 and d1.
There are 500 flows with rate 16 kb/s betweenh2 to d2. There
are also two best-effort flows (f0) from h3 to d3 and h4 to
d4 to occupy the unallocated bandwidth. The two best-effort
flows are generated from two Pareto sources with mean on
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Fig. 8. Network topology of the simulation.

and off time 100 ms, andα = 1.5. The average rate of each
Pareto source is 2 mb/s, which is larger than the unallocated
bandwidth of the network.

We then measure the end-to-end delays off1 andf2 under
G-3, RRR, and SRR, respectively. Fig. 9 shows the results.

Fig. 9. End-to-end delays off1 (32 kb/s) andf2 (1024 kb/s) under G-3,
RRR, and SRR.

Fig. 9 demonstrates that G-3 outperforms RRR and SRR
significantly. The maximum end-to-end delays off1 andf2 are
88ms and 25.6ms, which are smaller than the corresponding
G-3 upper bounds 122ms and 25.8ms, respectively. The worst-
case delays for bothf1 andf2 are large (both are 144ms) under
SRR, and the delay off2 is rather large even if its reserved
rate is 1024 kb/s. The delays off1 and f2 under RRR are
much larger than that under G-3. And the delay off1 under
RRR is even much larger than that under SRR. This is because
the m values of RRR are large (m = 6 and 11 forf1 andf2,
respectively) and thatm has large impact on flows with low
reserved rate. See [11] for more simulations.

VI. CONCLUSION

We have presented a G-3 packet scheduling algorithm for
fixed size packet networks. G-3 provides both strictO(1)
time complexity and bounded end-to-end delay. Both analysis
and simulations demonstrate that G-3 provides fair bandwidth
allocation and bounded end-to-end delays. G-3 demonstrates
that dynamiccircuits can be constructed efficiently in packet
networks with minimal time complexity overhead. Due to
its O(1) time complexity, G-3 can be used in high-speed
networks, where time complexity is one of the most critical
factors for choosing scheduling algorithms, to provide guar-
anteed bandwidth and bounded delay.
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