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Outline

• Background: System/networking meets ML

• Deepview: ML for availability improvement of cloud systems

• RDMA for scalable ML training acceleration 

• Summary
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Two Different Approaches
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• Network/systems are designed by following 
principles

• Interfaces are explicitly defined, protocols are 
explicitly coded, and packets can be traced and 
explained

training

inference labeling 

training 
datasetmodel

data

• Models in machine learning are learned
from data without explicit programming

• Deep learning made breakthroughs in 
computer vision and speech



Networking Meets Machine Learning

4

ML
Networking/system

ML helps to improve 
system/network availability

Networking to scale and accelerate 
ML systems   



Code Repo 

Software systems

Deployment/
provisioning

Resource 
mgmt

Config/ 
Management

Monitoring

Data Repo 

Software Rules the Clouds
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Incidents, Incidents, Incidents
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System Availability is Plagued by Incidents

99.999%

99.99%

5 min downtime per year
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53 min downtime per year

𝐴 =
𝛴𝑇_𝑢

σ𝑇_𝑢 + 𝛴𝑇_𝑑



Code Repo 

Software systems

Deployment/ 
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Data Repo 

Incident Handling Practice
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Lessons learned



Deployment
Provisioning
Monitoring
Resource mgmt

OPS

Incident localization
detection

Design 
implement
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Automation

Dev

Incident resolution, 
mitigation

Availability 
fundamentals

Gray 
failure

PanoramaByteBrain

Deepview
Netbouncer
Pingmesh

Incident prevention
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Deepview for Virtual Disk Failure Diagnosis
-- A case where ML helps system availability



VM Availability

• IaaS is one of the largest cloud services today

• High VM availability is a key performance metric

• Yet, achieving 99.999% VM uptime remains a challenge
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1. What is the VM availability bottleneck?
2. How to eliminate it?



Clos Network

IaaS Architecture

• Compute and storage clusters with 
a Clos-like network

• Compute-storage Separation

• VMs and Virtual Hard Disks 
(VHDs) provisioned from 
different clusters

• Hypervisor transparently 
redirects disk access to remote 
storage

• Keep data available during localized 
power failure to a rack 

Storage Cluster
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VM

Hypervisor

Host

VM

Compute Cluster

Subsystems inside a Datacenter



A New Type of Failure: VHD Failures

• Infra failures can disrupt VHD access

• Hypervisor can retry, but not 
indefinitely

• Hypervisor will crash the VM to surface 
failures to customer

• Allow customers to take actions to keep 
their app-level SLAs
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Clos Network

Storage Cluster

VM

Hypervisor

Host

VM

Compute Cluster

How much do VHD failures 
impact VM availability?

Subsystems inside a Datacenter



Availability Bottleneck

• VHD failure localization is the bottleneck

• 52% of unplanned VM downtime

• Take 10s minutes to hours to localize

• This talk: quick and accurate failure localization

VHD 
Failure

52%
SW 

Failure
41%

HW Failure
6%

Unknown 1%

Breakdown of Unplanned 
VM Downtime in a Year
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Failure Triage was Slow and Inaccurate

• SREs from each team check their subsystem for anomalies to match the incident

• e.g. compute host heart-beats, storage perf-counters, network link discards

• Incidents get ping-ponged among different teams due to false positives

• Inaccurate diagnosis and delayed mitigation

• Gray failures in network and storage are hard to catch

• Troubled but not totally down, e.g. performance issues or software bugs

• Only fail a subset of VHDs requests

• Can take hours to localize
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Deepview Approach: Global View
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Grid View

• Isolate failures by examining interactions between subsystems

• Instead of alerting every SRE team to check if their subsystem is at fault 

• Bipartite model

• Compute Clusters (left) : Storage Clusters (right)

• VMs are provisioned from compute/storage cluster pair

• Edge weight = VHD failure rate
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Our Approach: Global View
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Challenges

Remaining challenges:

1. Need to pinpoint network failures

2. Need to handle gray failures

3. Need to be near-real-time

Generalized model to include network devices

Lasso regression/Hypothesis testing algorithm

Streaming data pipeline

A system to localize VHD failures to underlying failures in compute, storage or 
network subsystems within a time budget of 15 minutes

Summary of our goal:
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Time budget set by production team to meet availability goals



Deepview Model: Include the Network
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Clos Network

Storage ClusterCompute Cluster

• Need to handle multipath and ECMP

• Simplify Clos network to a tree by aggregating network devices

• Can model at the granularity of clusters or ToRs



Deepview Model: Estimate Component Health

𝐏𝐫𝐨𝐛 𝐩𝐚𝐭𝐡 𝐢 𝐢𝐬 𝐡𝐞𝐚𝐥𝐭𝐡𝐲 = ෑ

𝐣∈𝐩𝐚𝐭𝐡(𝐢)

𝐏𝐫𝐨𝐛 𝐜𝐨𝐦𝐩𝐨𝐧𝐞𝐧𝐭 𝐣 𝐢𝐬 𝐡𝐞𝐚𝐥𝐭𝐡𝐲

𝟏 −
𝐞𝐢
𝐧𝐢
= ෑ

𝐣∈𝐩𝐚𝐭𝐡(𝐢)

𝐩𝐣

𝐥𝐨𝐠 𝟏 −
𝐞𝐢
𝐧𝐢

= ෍

𝐣∈𝐩𝐚𝐭𝐡(𝐢)

𝐥𝐨𝐠 𝐩𝐣

𝐲𝐢 =෍

𝐣=𝟏

𝐍

𝛃𝐣 𝐱𝐢𝐣+ 𝛆𝐢

𝐲𝐢=𝐥𝐨𝐠 𝟏 −
𝐞𝐢

𝐧𝐢

𝛃𝐣=𝐥𝐨𝐠 𝐩𝐣
𝛆𝐢=measurement noise

System of Linear Equations

Blue: observable
Red: unknown
Purple: topology
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Component j is healthy with
𝐩𝐣 = 𝐞𝐱𝐩(𝛃𝐣)

• βj = 0, clear component j

• βj ≪ 0, may blame it

*Assume independent failures

𝐞𝐢=num of VMs crashed
𝒏𝐢=num of VMs



Deepview Algorithm:
Prefer Simpler Explanation via Lasso

• Potentially #unknowns > #equations

• Traditional least-square regression would fail

Sparsity

෡𝛃 = 𝐚𝐫𝐠𝐦𝐢𝐧
𝛃∈ℝ𝐍,𝛃≤𝟎

𝐲 − 𝐗𝛃 𝟐 + 𝛌 𝛃 𝟏

Lasso Objective Function:

𝐲𝟏 = 𝛃𝐜𝟏 + 𝛃𝐧𝐞𝐭 + 𝛃𝐬𝟏 + 𝛆𝟏
𝐲𝟐 = 𝛃𝐜𝟏 + 𝛃𝐧𝐞𝐭 + 𝛃𝐬𝟐 + 𝛆𝟐
𝐲𝟑 = 𝛃𝐜𝟐 + 𝛃𝐧𝐞𝐭 + 𝛃𝐬𝟏 + 𝛆𝟑
𝐲𝟒 = 𝛃𝐜𝟐 + 𝛃𝐧𝐞𝐭 + 𝛃𝐬𝟐 + 𝛆𝟒

Net

C1 C2 S1 S2

𝐲𝐢 =෍

𝐣=𝟏

𝐍

𝛃𝐣 𝐱𝐢𝐣+ 𝛆𝐢
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Example:

• But multiple simultaneous failures are rare

• How to encode this domain knowledge 
mathematically?

• Equivalent to prefer most βj to be zero 

• Lasso regression can get sparse solutions efficiently



Deepview Algorithm:
Principled Blame Decision via Hypothesis Testing

• Need a binary decision (flag/clear) for each component

• Ad-hoc thresholds do not work reliably

• Can we make a principled decision?

• If estimated failure probability worse than average, then likely a real failure

• Automate this empirical decision criterion using a hypothesis test:

• Reject H0 j means blame component j

• Otherwise, clear component j

𝐇𝟎 𝐣 : 𝛃𝐣 = ഥ𝛃 𝐯𝐬. 𝐇𝐀 𝐣 : 𝛃𝐣 < ഥ𝛃
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Kusto Engine

Deepview System Architecture: NRT Data Pipeline
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VHD Failure

VM Info

StorageAcct

Net Topo

VMsPerPath Input

Real-time

Non-RT

Ingestion
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RAW DATA SLIDING WINDOW OF INPUT

Output

ACTIONS

Alerts

Vis

Near-realtime

Scheduler

RUN ALGO
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Some Statistics

• Analyzed Deepview results for one month

• Daily VHD failures: hundreds to tens of thousands

• Detected 100 failures instances

• 70 matched with existing tickets, 30 were previously undetected

• Reduced unclassified VHD failures to less than a max of 500 per day

• Single-host failures or customer mistakes (e.g. expired storage accounts)
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Case Study 1: Unplanned ToR Reboot

• Unplanned ToR reboot can cause VMs to crash

• We knew this can happens, but not where and when

• Deepview can flag those ToRs

• The figure shows a ToR down in one small region

• Blamed the right ToR among 288 components

• Associate VM downtime with ToR failures

• Quantify the impact of ToR as a single-point-of-failure 
on VM availability
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Case Study 2: Storage Cluster Gray Failure

• Impact only a subset of VMs

• A storage cluster was brought online 
with a bug that puts some VHDs in 
negative cache

• Deepview flagged the faulty storage 
cluster almost immediately while 
manual triage took 20+ hours

Number of VMs with VHD 
Failures per Hour during a 

Storage Cluster Gray Failure
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Deepview Insight: ToR as a Single Point of 
Failure
• Reduced Network Cost vs. Availability cost for using a single ToR per rack

• Unplanned ToR failures: soft failures (recoverable by reboot) vs. hard failures

ToR Availability

= 𝟏 −
𝟗𝟎% ∗ 𝟐𝟎𝐦𝐢𝐧 + 𝟏𝟎% ∗ 𝟏𝟐𝟎𝐦𝐢𝐧 ∗ 𝟎. 𝟏%

𝟑𝟎 ∗ 𝟐𝟒 ∗ 𝟔𝟎 𝐦𝐢𝐧

= 𝟏 −
% 𝐬𝐨𝐟𝐭 ∗ 𝐬𝐨𝐟𝐭 𝐝𝐮𝐫. +% 𝐡𝐚𝐫𝐝 ∗ 𝐡𝐚𝐫𝐝 𝐝𝐮𝐫. ∗ 𝐟𝐫𝐚𝐜. 𝐫𝐞𝐛𝐨𝐨𝐭𝐞𝐝 𝐓𝐨𝐑𝐬 𝐩𝐞𝐫 𝐦𝐨𝐧𝐭𝐡

𝐭𝐨𝐭𝐚𝐥 𝐭𝐢𝐦𝐞 𝐢𝐧 𝐚 𝐦𝐨𝐧𝐭𝐡

= 𝟗𝟗. 𝟗𝟗𝟗𝟗𝟑%

• Dependent services (ToRs) need to provide one extra nine to target service (VMs) 

27ToRs are not on critical path for VMs to achieve five-nines availability



Deepview Insight: VMs and their Storage Co-
location
• For load balancing, VMs can mount VHDs from any storage cluster in the 

same region

• Some VMs have storage that are further away

• Can longer network paths impact VM availability?

28
Some benefit to co-locate VM and their VHDs

• At Azure, 52% two-hop, 41% three-hop

• Compute daily VHD failure rates: r0 (two-hop), r1 (three-hop)

• Average over 3-months

• Yes! Τഥ𝐫𝟏 − ഥ𝐫𝟎 ഥ𝐫𝟎 = 𝟏𝟏. 𝟒% 𝐢𝐧𝐜𝐫𝐞𝐚𝐬𝐞
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RDMA for ML Training Acceleration
-- A case where networking helps ML to scale



Background
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Content Understanding using DNN
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cat
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DNN Training: BP
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Forward

Backward



Distributed Training Acceleration

• GPU, with mini-batch

• Distributed training (data parallel) 
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GPU servers GPU servers

Parameter 
server

Parameter 
server



Arnold Training System

Compute (GPU, 
CPU, FPGA, ASIC)

Network
(RDMA)

Storage
(CephFS)

Mesos Nvidia Docker
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When Communication Becomes Bottleneck
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RDMA/RoCEv2 background

• RDMA addresses TCP’s latency and CPU 
overhead problems
• RDMA offloads the transport layer to the 

NIC

• RDMA needs a lossless network

• RoCEv2: RDMA over commodity 
Ethernet
• PFC for hop-by-hop flow control

• DCQCN for connection-level congestion 
control [sigcomm15]

• Many issues addressed [sigcomm16, 
conext17]
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RDMA Cluster for Arnold Training

• 100Gbps throughput between any servers
• Micros-second e2e latency
• Minimal CPU overhead for packet processing

• Many models spend large 
amount of time on 
communication

ₓ Poor TCP performance
ₓ Low network bandwidth

• 100GbE RDMA network
✓ Much higher bandwidth
✓ Reduces communication time
✓ Scales the cluster to thousands of 

GPU cards 



RDMA Many-To-One
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Throughput

PFC

ECN

switch
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100GbE
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RDMA for ML Training Acceleration (CNN)
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Batch size: 32 Batch size: 64



RDMA for ML Training Acceleration (RNN)
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When RDMA Acceleration Helps

Forward Backward

Minibatch1

Epoch0 Epoch1 Epoch2 Epoch3 Epoch M

Minibatch0 Minibatch2 Minibatch N

Training

f_0 f_1 … f_{n-1} b_0b_{n-2} …b_{n-1}

s_{n-1} g_{n-1}

s_{n-2} g_{n-2}

s_0 g_0

…



When RDMA Acceleration Helps

• Big models
• ResNet50 (98MB), VGG19 (548MB)

• Communication/computation ratio is large
• Layers with large parameter size

• Small minibatch size

• When TCP is slow
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Summary

• ML will be a core part for building highly available systems 
• Deeper availability understanding 

• Automatic incident localization, mitigation, prevention

• Intelligent system/network design

• System/networking for ML
• Scalable ML systems

• Hardware, systems, ML services integrated design
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