
Accelerating Distributed DNN
Training with BytePS

Chuanxiong Guo

1

HPC Interconnects Forum, HPC China

September 30 2020

Outline

• DNN Background

• DNN Training Acceleration with BytePS
• RDMA

• ByteDance Tensor Scheduler: ByteScheduler

• Summation Service

• Summary

2

Hardware

Application

3

PSTN WindowsTCP/IP Linux
Mobile
Internet

Cloud
Computing

Web
Browser

ML
systems

System

Cellular

4

https://www.karlrupp.net/2016/08/flops-per-cycle-for-cpus-
gpus-and-xeon-phis/

https://en.wikipedia.org/wiki/FLOPS

(2018 US dollars)

https://www.karlrupp.net/2016/08/flops-per-cycle-for-cpus-gpus-and-xeon-phis/

1

10

100

1000

10000

100000

1000000

Resnet50 Transformer VGG16 BERT-large GPT-2 Megatron GPT-3

Model size

10 Years 5 Years!

DNN Models

AlexNet VGG ResNet Transformer Bert pre-training
6

DNN Models
Model (dataset) Resnet50(imagenet) VGG16(imagenet) Transformer(WMT17) Bert base Bert large

Model param# (M) 26 138 61 148 387

GFlops FP (batch
size 1)

3.9 16 37 52 170

GFlops BP (batch
size 1)

7.8 32 74 97 324

Time for FP (ms) 7 (batch1)
32 (batch32)

5 (batch1)
49 (batch32)

5 (batch1)
95 (batch16)

13 (batch1)
188 (batch85)

22 (batch1)
339 (batch35)

Time for BP (ms) 14 (batch1)
64 (batch32)

11 (batch1)
100 (batch32)

14 (batch1)
114 (batch16)

42 (batch1)
281 (batch85)

102 (batch1)
508 (batch35)

Ideal comm. time
(ms), 100GbE

8.32 44.6 19.52 23.68 61.92

#Iter. to converge 450k(total batch size
256)

370k (total batch
size 256)

100k (total batch size
4096)

125k (64 V100) 125k (64 V100)

Data shuffled for
convergence (TB)

46.8 (fp32) 204 (fp32) 24 (fp16) 37 (fp16) 97 (fp16)

7

DNN Models
Model (dataset) Resnet50(imagenet) VGG16(imagenet) Transformer(WMT17) Bert base Bert large

Model param# (M) 26 138 61 148 387

GFlops FP (batch
size 1)

3.9 16 37 52 170

GFlops BP (batch
size 1)

7.8 32 74 97 324

Time for FP (ms) 7 (batch1)
32 (batch32)

5 (batch1)
49 (batch32)

5 (batch1)
95 (batch16)

13 (batch1)
188 (batch85)

22 (batch1)
339 (batch35)

Time for BP (ms) 14 (batch1)
64 (batch32)

11 (batch1)
100 (batch32)

14 (batch1)
114 (batch16)

42 (batch1)
281 (batch85)

102 (batch1)
508 (batch35)

Ideal comm. time
(ms), 100GbE

8.32 44.6 19.52 23.68 61.92

#Iter. to converge 450k(total batch size
256)

370k (total batch
size 256)

100k (total batch size
4096)

125k (64 V100) 125k (64 V100)

Data shuffled for
convergence (TB)

46.8 (fp32) 204 (fp32) 24 (fp16) 37 (fp16) 97 (fp16)

8

• Training is a mechanical, iterative process
• Models need more and more computational power
• DNN training needs to shuffle huge amount of data

Back Prop based DNN Training

Forward Backward

Minibatch1

Epoch0 Epoch1 Epoch2 Epoch3 Epoch M

Minibatch0 Minibatch2 Minibatch N

Training

f_0 f_1 … f_{n-1} b_0b_{n-2} …b_{n-1}

g_{n-1} p_{n-1}

g_{n-2} p_{n-2}

g_0 p_0

…

9

Parameter update:

Distributed DNN Training

worker

worker

worker worker

worker

Parameter Server All-reduce

10

Outline

• DNN Background

• DNN Training Acceleration with BytePS
• RDMA

• ByteScheduler

• Summation Service

• Summary

11

RDMA

• Remote Direct Memory Access (RDMA): Method of accessing
memory on a remote system without interrupting the processing of
the CPU(s) on that system

• RDMA offloads packet processing protocols to the NIC

• IBVerbs/NetDirect for RDMA programing

• RDMA in Ethernet based data centers (RoCEv2)

12

RoCEv2: RDMA over Commodity Ethernet

• RoCEv2 for Ethernet based data
centers

• DSCP-based PFC for lossless
networking

• DCQCN for flow-based congestion
control

• Huge engineering efforts to make it
scalable and safe

TCP/IP

NIC driver

U
se

r
K

er
n

el
H

ar
d

w
ar

e

RDMA
transport

IP
Ethernet

RDMA app

DMA

RDMA verbs

TCP/IP

NIC driver

Ethernet

RDMA app

DMA

RDMA verbs

Lossless
network

RDMA
transport

IP

13

Using RDMA for Communication

• RDMA NIC Offloading: ~0% CPU usage
• RDMA Latency benefits (lower latency than TCP)

• Kernel bypassing
• Fast start / Lossless networking / ACK consolidation

~0% CPU Usage Lower latency compared to
TCP 14

Vanilla RDMA Does Not Perform Well

• For large models, vanilla RDMA outperforms TCP
• VGG19 has some large tensors (hundreds of MB), making the overhead not evident

• For small models, vanilla RDMA is worse than TCP
• Resnet50 and Inception-BN have a lot of small tensors (most of them no more than 1MB)
• The overhead is larger than the benefit that RDMA brings

15

Optimizing RDMA for DNN Training

Our optimizations on RDMA performance

• Tensor buffer memory reuse

• One-way RDMA write

• Zero-copy RDMA data path

• Address the Slow-Receiver Symptom

16

Tensor Buffer Memory Reuse

• RDMA message needs to be registered before sent
• Reuse the tensor memory region

• i.e., the sending buffer memory address can be reused
• we only need to do reg_mr once in the first training iteration, and reuse the memory in

all the following iterations
• can benefit frameworks that decouple memory allocation with its communication library

(e.g., MXNet & ps-lite)

reg_mr post_senditeration-0 compute update

reg_mr post_senditeration-1 compute update

reg_mr post_senditeration-0 compute update

post_senditeration-1 compute update

Vanilla

Optimized

17

One-way RDMA-write

• Reduce redundant rendezvous latency
• Rendezvous: get the remote buffer address to write the data
• With memory reuse, we only need Rendezvous once, and remove redundant rendezvous

because the remote memory address does not change

sender receiver
1. Rendezvous Start

2. Rendezvous Reply

3. Data RDMA-write

Remove repeated rendezvous

sender receiver
1. Rendezvous Start

2. Rendezvous Reply

3. Data RDMA-write

Vanilla Optimized 18

Zero-copy RDMA Data Path

• There exists several memory copy ops on the data path
• Worker sends push requests to server, server copies the result to CPU

buffer
• Server sends pull responses to worker, worker copies to CPU buffer

• Memory copy decreases performance
• Single-threaded memcpy bandwidth: ~40Gbps
• Memcpy significantly decreases RDMA bandwidth utilization

• We remove all memcpy on RDMA data-path, and achieve
zero-copy communication

19

Address the Slow-Receiver Symptom
Problem 1: RDMA loopback traffic creates internal incast

Memory

Loopback

RX

2:1 incast!

Use shared memory to
eliminate loopback traffic

Problem 2: the DMA write can be slow
• Use page-aligned buffers to reduce the # pages to be written

Problem 3: the RX can be impacted by the concurrent TX (not duplex)
• Without TX, the RX works well; With TX, the RX cannot reach line rate

• Use page-aligned sending buffers and enforce only one SGE per RDMA write

20

Outline

• DNN Background

• DNN Training Acceleration with BytePS
• RDMA

• ByteScheduler

• Summation Service

• Summary

21

Dependency Graph

Dependency:

• Backward depends on forward

• Push depends on backward

22

• Pull depends on push
• Forward depends on pull

Scheduling the Tensor Transmission Order

• ML framework executes communication operations in FIFO order

• Problem: FIFO strategy delays push and pull of layer 0 and hence delays

the start of next iteration
• Priority scheduling: layer i with higher priority than j for i < j

23

Priority Scheduling and Tensor Partitioning

• In this example, priority scheduling and tensor partition result in 44% speedup

24

Priority Scheduling and Tensor Partitioning

• Tensor partitioning reduces an NP-
hard problem to an easy problem

• Tensor partitioning was first
introduced in P3 and TicTac

25

ByteScheduler: One Unified Scheduler for ALL

• Dependency graphs have similar structure for different ML frameworks, DNN

models and communication methods (PS or all-reduce, TCP or RDMA)

• We aim to design a generic scheduler, no matter which ML framework and
communication method.

Challenges addressed in ByteScheduler:
• Many training frameworks: TensorFlow, PyTorch, MxNet, etc.
• Imperative engines (e.g., PyTorch) and declarative engines (e.g., TensorFlow)

• Global barrier between iterations (e.g., TensorFlow, PyTorch)

26

Outline

• DNN Background

• DNN Training Acceleration with BytePS
• RDMA

• ByteScheduler

• Summation Service

• Summary

27

Summation Service (SS)

Why design SS, rather than re-using the conventional PS process?
• In PS, the optimizer in placed on the servers, leading to two problems

theta(t+1) = theta(t) - f(gradient)

Server

Optimizers are complicated
and must be scheduled by
framework engines

f(gradient) needs to be implemented
in framework specific syntax

Problem 1: Optimizer update on server requires
framework-specific implementation, hindering

the cross-framework requirement

Problem 2: Using CPU-based servers for optimizer
update cannot match the 100 Gbps network

bandwidth, causing CPU bottleneck

28

CPU for Gradient Summation
Optimizer update can be divided into gradient summation and
parameter update

Though not efficient to run optimizer, CPU is good at summation
• Summation on modern x86 CPUs can be optimized using AVX instructions

Our key idea: put optimizer update on GPU, and sum gradient on CPU

29

Parameter Server V.S. Summation Service
Advantages of Summation Service

• The server only sums up gradient, which is framework-independent (generic)

• The heavy optimizer update is now performed by GPU (high performance)

A high level comparison:

fp

bp

update

sum

GPU

optimizer

CPU

Parameter Server

fp

bp

update

sum

GPU

optimizer

CPU

BytePS

30

Evaluation

• GPU servers, each with 8 V100 GPUs and a 100Gbps NIC

• RDMA/RoCEv2 network, full bisection bandwidth

• Benchmarks: BERT-Large, ResNet, Transformer, GPT-2, VGG, UGATIT-GAN

• Baselines:

• Naïve PS

• All-reduce

• BytePS w/o CPU servers

• Linear scaling

• Metric: training speed (samples/sec or tokens/sec)

31

BERT-Large (TF)

Near 89%+ performance gain for 256 GPUs

Without BytePS, the entire training takes about 18-19 days!

We reduce the training time to about 10 days.

steps/sec 32 GPUs 256 GPUs

Baseline (Horovod) 1.00 0.71

BytePS 1.35 1.34

32

Video Classification (MxNet)
ResNet-alike, image classification model

33

97.5% scaling
efficiency for 256 GPUs

TF ResNet-50, batch = 256 images

Scalability
BytePS outperforms PS & All-reduce on all CV and NLP models

TF Transformer, batch = 3072 tokens MxNet BERT-Large, batch = 8192 tokens PyTorch GPT-2, batch = 80 tokens

TF ResNet-50, batch = 256 images MxNet VGG-16, batch = 96 images PyTorch UGATIT-GAN, batch = 2 images

BytePS scales well on almost all models

34

Summary

35

PSTN WindowsTCP/IP Linux
Mobile
Internet

Cloud
Computing

Web
Browser

ML
system

System

Cellular

• BytePS

• RDMA for tensor communication acceleration

• ByteScheduler: optimal communication and
computation overlapped tensor scheduler

• Summation Service: better computation partitioning

• ML systems opportunities

• Distributed, parallel HPC

• Scale out and up

• Reduce cost

Q&A

• Thanks the interns and members of the Machine Learning Systems
Group at ByteDance AILab!

• We are hiring!

• Both ByteDance Networking, and Machine Learning Systems groups

• guochuanxiong@bytedance.com

36

mailto:guochuanxiong@bytedance.com

