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https://www.karlrupp.net/2016/08/flops-per-cycle-for-cpus-
gpus-and-xeon-phis/

https://en.wikipedia.org/wiki/FLOPS

(2018 US dollars)

https://www.karlrupp.net/2016/08/flops-per-cycle-for-cpus-gpus-and-xeon-phis/
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DNN Models

AlexNet VGG ResNet Transformer Bert pre-training
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DNN Models
Model (dataset) Resnet50(imagenet) VGG16(imagenet) Transformer(WMT17) Bert base Bert large

Model param# (M) 26 138 61 148 387

GFlops FP (batch 
size 1)

3.9 16 37 52 170

GFlops BP (batch 
size 1)

7.8 32 74 97 324

Time for FP (ms) 7 (batch1)
32 (batch32)

5 (batch1)
49 (batch32)

5 (batch1)
95 (batch16)

13 (batch1)
188 (batch85)

22 (batch1)
339 (batch35)

Time for BP (ms) 14 (batch1)
64 (batch32)

11 (batch1)
100 (batch32)

14 (batch1)
114 (batch16)

42 (batch1)
281 (batch85)

102 (batch1)
508 (batch35)

Ideal comm. time 
(ms), 100GbE

8.32 44.6 19.52 23.68 61.92

#Iter. to converge 450k(total batch size 
256)

370k (total batch 
size 256)

100k (total batch size 
4096)

125k (64 V100) 125k (64 V100)

Data shuffled for 
convergence (TB)

46.8 (fp32) 204 (fp32) 24 (fp16) 37 (fp16) 97 (fp16)
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• Training is a mechanical, iterative process
• Models need more and more computational power
• DNN training needs to shuffle huge amount of data



Back Prop based DNN Training

Forward Backward

Minibatch1

Epoch0 Epoch1 Epoch2 Epoch3 Epoch M

Minibatch0 Minibatch2 Minibatch N

Training

f_0 f_1 … f_{n-1} b_0b_{n-2} …b_{n-1}

g_{n-1} p_{n-1}

g_{n-2} p_{n-2}

g_0 p_0

…
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Parameter update:



Distributed DNN Training

worker

worker

worker worker

worker

Parameter Server All-reduce
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RDMA

• Remote Direct Memory Access (RDMA): Method of accessing 
memory on a remote system without interrupting the processing of 
the CPU(s) on that system 

• RDMA offloads packet processing protocols to the NIC

• IBVerbs/NetDirect for RDMA programing 

• RDMA in Ethernet based data centers (RoCEv2)
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RoCEv2: RDMA over Commodity Ethernet

• RoCEv2 for Ethernet based data 
centers

• DSCP-based PFC for lossless 
networking

• DCQCN for flow-based congestion 
control 

• Huge engineering efforts to make it 
scalable and safe
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Using RDMA for Communication

• RDMA NIC Offloading: ~0% CPU usage
• RDMA Latency benefits (lower latency than TCP)

• Kernel bypassing
• Fast start / Lossless networking / ACK consolidation

~0% CPU Usage Lower latency compared to 
TCP 14



Vanilla RDMA Does Not Perform Well

• For large models, vanilla RDMA outperforms TCP
• VGG19 has some large tensors (hundreds of MB), making the overhead not evident

• For small models, vanilla RDMA is worse than TCP
• Resnet50 and Inception-BN have a lot of small tensors (most of them no more than 1MB)
• The overhead is larger than the benefit that RDMA brings
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Optimizing RDMA for DNN Training

Our optimizations on RDMA performance

• Tensor buffer memory reuse

• One-way RDMA write

• Zero-copy RDMA data path

• Address the Slow-Receiver Symptom

16



Tensor Buffer Memory Reuse

• RDMA message needs to be registered before sent
• Reuse the tensor memory region 

• i.e., the sending buffer memory address can be reused
• we only need to do reg_mr once in the first training iteration, and reuse the memory in 

all the following iterations 
• can benefit frameworks that decouple memory allocation with its communication library 

(e.g., MXNet & ps-lite)

reg_mr post_senditeration-0 compute update

reg_mr post_senditeration-1 compute update

reg_mr post_senditeration-0 compute update

post_senditeration-1 compute update

Vanilla

Optimized
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One-way RDMA-write

• Reduce redundant rendezvous latency 
• Rendezvous: get the remote buffer address to write the data
• With memory reuse, we only need Rendezvous once, and remove redundant rendezvous 

because the remote memory address does not change

sender receiver
1. Rendezvous Start

2. Rendezvous Reply

3. Data RDMA-write

Remove repeated rendezvous

sender receiver
1. Rendezvous Start

2. Rendezvous Reply

3. Data RDMA-write

Vanilla Optimized 18



Zero-copy RDMA Data Path

• There exists several memory copy ops on the data path
• Worker sends push requests to server, server copies the result to CPU 

buffer
• Server sends pull responses to worker, worker copies to CPU buffer

• Memory copy decreases performance
• Single-threaded memcpy bandwidth: ~40Gbps
• Memcpy significantly decreases RDMA bandwidth utilization

• We remove all memcpy on RDMA data-path, and achieve 
zero-copy communication
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Address the Slow-Receiver Symptom
Problem 1: RDMA loopback traffic creates internal incast

Memory

Loopback

RX

2:1 incast!

Use shared memory to 
eliminate loopback traffic 

Problem 2: the DMA write can be slow
• Use page-aligned buffers to reduce the # pages to be written

Problem 3: the RX can be impacted by the concurrent TX (not duplex)
• Without TX, the RX works well; With TX, the RX cannot reach line rate

• Use page-aligned sending buffers and enforce only one SGE per RDMA write
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Dependency Graph

Dependency: 

• Backward depends on forward

• Push depends on backward
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• Pull depends on push
• Forward depends on pull



Scheduling the Tensor Transmission Order

• ML framework executes communication operations in FIFO order

• Problem: FIFO strategy delays push and pull of layer 0 and hence delays 

the start of next iteration
• Priority scheduling: layer i with higher priority than j for i < j
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Priority Scheduling and Tensor Partitioning

• In this example, priority scheduling and tensor partition result in 44% speedup
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Priority Scheduling and Tensor Partitioning

• Tensor partitioning reduces an NP-
hard problem to an easy problem

• Tensor partitioning was first 
introduced in P3 and TicTac
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ByteScheduler: One Unified Scheduler for ALL

• Dependency graphs have similar structure for different ML frameworks, DNN 

models and communication methods (PS or all-reduce, TCP or RDMA)

• We aim to design a generic scheduler, no matter which ML framework and 
communication method.

Challenges addressed in ByteScheduler:
• Many training frameworks: TensorFlow, PyTorch, MxNet, etc. 
• Imperative engines (e.g., PyTorch) and declarative engines (e.g., TensorFlow)

• Global barrier between iterations (e.g., TensorFlow, PyTorch)
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Summation Service (SS)

Why design SS, rather than re-using the conventional PS process?
• In PS, the optimizer in placed on the servers, leading to two problems

theta(t+1) = theta(t) - f(gradient)

Server

Optimizers are complicated 
and must be scheduled by 
framework engines

f(gradient) needs to be implemented
in framework specific syntax

Problem 1: Optimizer update on server requires 
framework-specific implementation, hindering 

the cross-framework requirement

Problem 2: Using CPU-based servers for optimizer 
update cannot match the 100 Gbps network 

bandwidth, causing CPU bottleneck
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CPU for Gradient Summation
Optimizer update can be divided into gradient summation and 
parameter update

Though not efficient to run optimizer, CPU is good at summation
• Summation on modern x86 CPUs can be optimized using AVX instructions

Our key idea: put optimizer update on GPU, and sum gradient on CPU
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Parameter Server V.S. Summation Service
Advantages of Summation Service

• The server only sums up gradient, which is framework-independent (generic)

• The heavy optimizer update is now performed by GPU (high performance)

A high level comparison:

fp

bp

update

sum

GPU

optimizer

CPU

Parameter Server

fp

bp

update

sum

GPU

optimizer

CPU

BytePS
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Evaluation

• GPU servers, each with 8 V100 GPUs and a 100Gbps NIC

• RDMA/RoCEv2 network, full bisection bandwidth

• Benchmarks: BERT-Large, ResNet, Transformer, GPT-2, VGG, UGATIT-GAN

• Baselines:

• Naïve PS

• All-reduce

• BytePS w/o CPU servers

• Linear scaling

• Metric: training speed (samples/sec or tokens/sec)
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BERT-Large (TF)

Near 89%+ performance gain for 256 GPUs

Without BytePS, the entire training takes about 18-19 days! 

We reduce the training time to about 10 days.

steps/sec 32 GPUs 256 GPUs

Baseline (Horovod) 1.00 0.71

BytePS 1.35 1.34
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Video Classification (MxNet)
ResNet-alike, image classification model
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97.5% scaling 
efficiency for 256 GPUs

TF ResNet-50, batch = 256 images



Scalability
BytePS outperforms PS & All-reduce on all CV and NLP models

TF Transformer, batch = 3072 tokens MxNet BERT-Large, batch = 8192 tokens PyTorch GPT-2, batch = 80 tokens

TF ResNet-50, batch = 256 images MxNet VGG-16, batch = 96 images PyTorch UGATIT-GAN, batch = 2 images

BytePS scales well on almost all models
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Summary 
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• BytePS

• RDMA for tensor communication acceleration 

• ByteScheduler: optimal communication and 
computation overlapped tensor scheduler

• Summation Service: better computation partitioning  

• ML systems opportunities

• Distributed, parallel HPC

• Scale out and up

• Reduce cost



Q&A

• Thanks the interns and members of the Machine Learning Systems 
Group at ByteDance AILab!

• We are hiring! 

• Both ByteDance Networking, and Machine Learning Systems groups

• guochuanxiong@bytedance.com
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