Accelerating Distributed DNN
Training with BytePS

Chuanxiong Guo
hiil ByteDance

HPC Interconnects Forum, HPC China
September 30 2020

Outline

* DNN Background

* DNN Training Acceleration with BytePS

* RDMA
* ByteDance Tensor Scheduler: ByteScheduler

e Summation Service

* Summary

Appljcation

il

More Google!

Copyright ©1993 Google Inc.

Tomahawk 3

———

Hardware

1x1012

1x1010

1x108

1%108

10000

100

0.01

(2018 US dollars)

"Cost per GFLOPS @‘

01/01/1964 01/01/1970 01/01/1976 01/01/1982 01/01/1988 01/01/1994 01/01/2000 01/01/2006 01/01/2012 01/01/2018

https://en.wikipedia.org/wiki/FLOPS

FLOPs per Clock Cycle

Theoretical Peak Floating Point Operations per Clock Cycle, Double Precision

L)) 1

w - ! O P

: : ! ® N\ '

‘ ; . OV 0P (@

) ' ™

: . &

| : P~
\1&

0
3

N

<@ v <& . INTEL Xeon CPUS =il

NVIDIA Tesla GPUs —Jil}—

A Z & : AMD Radeon GPUs —{@)—

N e ; : INTEL Xeon Phis g
2008 2010 2012 2014 2016

End of Year

https://www.karlrupp.net/2016/08/flops-per-cycle-for-cpus-

gpus-and-xeon-phis/

https://www.karlrupp.net/2016/08/flops-per-cycle-for-cpus-gpus-and-xeon-phis/

FLOPs per Clock Cycle

Theoretical Peak Floating Point Operations per Clock Cycle, Double Precision

: : Model size

WY 0P (8 1000000
100000

10000

e 0
- . ‘\ !
D ¥
. i B
D & o8 1000
. I 26‘ :
: : 100
INTEL Xeon CPUs =—lle— 1
NVIDIA Tesla GPUs —Jll—
! AMD Radeon GPUs —@)—

o

st s R : INTEL Xeon Phis =g !
10" +° +9 W L ! 1 Resnet50 Transformer VGG16 BERT-large GPT-2 Megatron GPT-3
2008 2010 2012 2014 2016
End of Year
< 10 Years > « 5 Years! >

DNN Models

261

Z61
261

£

Buljood
XBW gzr

AlexNet

VGG-19 34-layer plain 34-layer residual

imag imag imag

ot [aseme]
A
““““ ? [Cmemam]

pool, /2.

¥

EEa| [CBoma |

outp
28

35 com 64
356 com 61
33 com 64

ouput
e

oupue

outpt
1

Output
Probabilities

Linear

VGG ResNet

Feed
Forward
'S | ~\ I Add & Norm :
LAdd & Norm } Mult-Head
Feed Attention
Forward I Nx
N I Add & Norm :
(—Pi Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At t
] \ —
Positional Positional
Encod D e -
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)
Transformer Bert pre-training

DNN Models

Model (dataset) Resnet50(imagenet) | VGG16(imagenet) | Transformer(WMT17)

Model param# (M) 26

GFlops FP (batch 3.9 16 37 52 170

size 1)

GFlops BP (batch 7.8 32 74 97 324

size 1)

Time for FP (ms) 7 (batch1l) 5 (batch1l) 5 (batch1) 13 (batch1) 22 (batch1)
32 (batch32) 49 (batch32) 95 (batch16) 188 (batch85) 339 (batch35)

Time for BP (ms) 14 (batchl) 11 (batch1) 14 (batch1) 42 (batchl) 102 (batchl)
64 (batch32) 100 (batch32) 114 (batch16) 281 (batch85) 508 (batch35)

Ideal comm. time 8.32 44.6 19.52 23.68 61.92

(ms), 100GbE

#lter. to converge 450k(total batch size 370k (total batch 100k (total batch size 125k (64 V100) 125k (64 V100)
256) size 256) 4096)
Data shuffled for 46.8 (fp32) 204 (fp32) 24 (fp16) 37 (fp16) 97 (fp16)

convergence (TB)

Model (dataset) Resnet50(imagenet) | VGG16(imagenet) | Transformer(WMT17)

Model param# (M) 26

GFlops FP (batch 3.9 16 37 52 170
size 1)

* Training is a mechanical, iterative process
* Models need more and more computational power

* DNN training needs to shuffle huge amount of data)
R —— S —— S —)
Ideal comm. time 8.32 44.6 19.52 23.68 61.92

(ms), 100GbE

#lter. to converge 450k(total batch size 370k (total batch 100k (total batch size 125k (64 V100) 125k (64 V100)
256) size 256) 4096)

Data shuffled for 46.8 (fp32) 204 (fp32) 24 (fp16) 37 (fp16) 97 (fp16)
convergence (TB)

Back Prop based DNN Training

EpochO Epoch1l Epoch2 Epoch3 = —-—— Epoch M
Training
MinibatchO —— Minibatchl —] Minibatch2z ~ ——— Minibatch N
Forward Backward

o[- oo [-

g_{n-1} | p_{n-1}

Parameter update: _
Qﬁ p— Qt_l + QVL(Qt—lj DIL)

Distributed DNN Training

server server

Parameter Server

All-reduce

10

Outline

* DNN Background

* DNN Training Acceleration with BytePS

e RDMA
* ByteScheduler
e Summation Service

* Summary

RDMA

 Remote Direct Memory Access (RDMA): Method of accessing
memory on a remote system without interrupting the processing of
the CPU(s) on that system

« RDMA offloads packet processing protocols to the NIC
* IBVerbs/NetDirect for RDMA programing
* RDMA in Ethernet based data centers (RoCEv2)

RoCEv2: RDMA over Commodity Ethernet

RDMA app RDMA app
_IL
o A

RDMA verbs RDMA verbs
. TCP/IP TCP/IP
e
2 NIC driver NIC driver
RDMA - - RDMA

% transport DMA DMA transport
g [p] T
£ Ethernet Ethernet

Lossless
network
.

S

RoCEv2 for Ethernet based data
centers

DSCP-based PFC for lossless
networking

DCQCN for flow-based congestion
control

Huge engineering efforts to make it
scalable and safe

13

Using RDMA for Communication

- RDMA NIC Offloading: ~0% CPU usage
- RDMA Latency benefits (lower latency than TCP)

* Kernel bypassing
Fast start / Lossless networking / ACK consolidation

aaaaaa

TCP BS0 r

_ 100 TCP @ e
~ 8 |"s ROMA —— oA P
=
§
g 40 =
& [u'd

2 20 - o o
O o L= . —) \

4KB 16KB 64KB 256KB 1MB 4MB

Message size

10 100 1000 10000

age size (KB)

~0% CPU Usage Lower Iateng;wcompared to
TCP

Vanilla RDMA Does Not Perform Well

For large models, vanilla RDMA outperforms TCP
VGG19 has some large tensors (hundreds of MB), making the overhead not evident

For small models, vanilla RDMA is worse than TCP

Resnet50 and Inception-BN have a lot of small tensors (most of them no more than 1MB)
The overhead is larger than the benefit that RDMA brings

VGG19, Batchsize=32 Resnet50, Batchsize=64 Inception-BN, Batchsize=64
40 B tcp 200 . TCP 300 B TCP
rdma . RDMA B RDMA

a0 150

200

20 100

100

10 S0

0
w1 vz 0

server VS worker # server VS worker

15

Optimizing RDMA for DNN Training

Our optimizations on RDMA performance
Tensor buffer memory reuse
One-way RDMA write
Zero-copy RDMA data path
Address the Slow-Receiver Symptom

Tensor Buffer Memory Reuse

- RDMA message needs to be registered before sent

- Reuse the tensor memory region

i.e., the sending buffer memory address can be reused

we only need to do reg_mr once in the first training iteration, and reuse the memory in
all the following iterations

can benefit frameworks that decouple memory allocation with its communication library
(e.g., MXNet & ps-lite)

iteration-0 compute » reg._mr » post_send » update
Vanilla (: — — — '
iteration-1 compute > reg_mr » post_send » update

iteration-0 compute » reg._mr » post_send » update
Optimized N : —
iteration-1 compute post_send

Y

v
(@

©
o
Q)
—t+
0

One-way RDMA-write

- Reduce redundant rendezvous latency
Rendezvous: get the remote buffer address to write the data

With memory reuse, we only need Rendezvous once, and remove redundant rendezvous
because the remote memory address does not change

sender receiver sender receiver

--.1. Rendezvous Start --_1. Rendezvous Start
_______________________ P -_----__"“~—_—_______>_

«----"""7777 €ommmmmmmmTTTTT

2. Rendezvous Repl

P R Remove repeated rendezvous 2. Rendezvous Reply
3. Data RDMA-write W
€-------------TTTTTTT >
__________________ > »
«----------STTTTTTmTT >

Vanilla Optimized

/Zero-copy RDMA Data Path

- There exists several memory copy ops on the data path

Worker sends push requests to server, server copies the result to CPU
buffer
Server sends pull responses to worker, worker copies to CPU buffer

- Memory copy decreases performance

Single-threaded memcpy bandwidth: ~40Gbps
Memcpy significantly decreases RDMA bandwidth utilization

- We remove all memcpy on RDMA data-path, and achieve
Zero-copy communication

Address the Slow-Receiver Symptom

Problem 1: RDMA loopback traffic creates internal incast

ck

~
o

Use shared memory to —
eliminate loopback traffic

2:1 incast!

L5
— — Memory

RX
Problem 2: the DMA write can be slow
* Use page-aligned buffers to reduce the # pages to be written

Problem 3: the RX can be impacted by the concurrent TX (not duplex)
* Without TX, the RX works well; With TX, the RX cannot reach line rate
* Use page-aligned sending buffers and enforce only one SGE per RDMA write

Outline

* DNN Background

* DNN Training Acceleration with BytePS

 RDMA
* ByteScheduler
e Summation Service

* Summary

Dependency Graph

< BP Iteration J » |«——FP lterationJ+1 —

GPU . { by-1~ | b1 — by > fo > fi — o — fn-d
Computation A A

- L>pusho J

> pully
Communication A —> push
U pushy_ — pull,
- —— pully_

Dependency:
Backward depends on forward ~ * Pull depends on push
Push depends on backward - Forward depends on pull

Scheduling the Tensor Transmission Order

GPU | by | by | bo Jo | [
Push 2 1 0
Pull 2 1 0 FIFO

time

ML framework executes communication operations in FIFO order

Problem: FIFO strategy delays push and pull of layer 0 and hence delays
the start of next iteration

Priority scheduling: layer 1 with higher priority than | for i <]

Priority Scheduling and Tensor Partitioning

GPU [by | by | bo Jo | fi | fo
Push 2 1 0
Pull 2 1 0 FIFO

>
GPU [by | by | by Jo fi | f time
Push 221100011112 Priority Scheduling

+ Tensor Partition
Pull 221100011112

In this example, priority scheduling and tensor partition result in 44% speedup

Priority Scheduling and Tensor Partitioning

Tensor partitioning reduces an NP-
hard problem to an easy problem

Tensor partitioning was first
introduced in P3 and TicTac

Theorem 1. The following priority queuing scheduler:

e in a PS architecture, prioritize pull; over pully, and push;
over pushy, Vi < k

e in an all-reduce architecture, prioritize allreduce; over
allreducey, Vi < k
is the optimal solution for minimizing the time for each train-
ing iteration, if the following conditions are met:

1. (Sequential GPU computation operations) The subgraph
of DAG containing only f; and b; is a chain (i.e., no parallel
layers in the DNN).

2. (Optimal GPU scheduling) Whenever the dependencies of
fi orb; are satisfied, GPU will run the computation operation
without preemption. This is the optimal GPU scheduler because
the GPU computation operations are in a chain.

3. (Tensor partition) Tensors in each DNN layer are par-
titioned, such that flow preemption can happen; with PS, if
the push flow in a layer is only partially done before being
preempted, the done part can be pulled.

4. (Infinitely small partition) Suppose the partition size is &
and § — 0.

5. (Flow preemption) Higher priority push/pull or all-reduce
can preempt lower priority push/pull or all-reduce immediately
without extra overhead.

25

ByteScheduler: One Unified Scheduler for ALL

Dependency graphs have similar structure for different ML frameworks, DNN
models and communication methods (PS or all-reduce, TCP or RDMA)

We aim to design a generic scheduler, no matter which ML framework and
communication method.

Challenges addressed in ByteScheduler:
Many training frameworks: TensorFlow, PyTorch, MxNet, etc.
Imperative engines (e.g., PyTorch) and declarative engines (e.g., TensorFlow)
Global barrier between iterations (e.g., TensorFlow, PyTorch)

Outline

* DNN Background

* DNN Training Acceleration with BytePS

 RDMA
* ByteScheduler
e Summation Service

* Summary

Summation Service (SS)

Why design SS, rather than re-using the conventional PS process?
* In PS, the optimizer in placed on the servers, leading to two problems

Problem 1: Optimizer update on server requires
framework-specific implementation, hindering
the cross-framework requirement

+ FEI

Tensor . ;
Optimizers are complicated
and must be scheduled by

J framework engines

theta(t+1) = theta(t) - f(gradient)

f(gradient) needs to be implemented
in framework specific syntax

Problem 2: Using CPU-based servers for optimizer
update cannot match the 100 Gbps network
bandwidth, causing CPU bottleneck

= 1.0 -

Q

o |

©

g —
= 0.5 -

= CPU

c CPU-

—

(o) No|O izer
e

o
o

SGD Mtum RMSProp

28

CPU for Gradient Summation

Optimizer update can be divided into gradient summation and
parameter update

Though not efficient to run optimizer, CPU is good at summation
 Summation on modern x86 CPUs can be optimized using AVX instructions

Our key idea: put optimizer update on GPU, and sum gradient on CPU

w
o
o

N
o
o

-- [Network B\W

=
o
o

Throughput (Gbps)

o

FP16 FP32

Parameter Server V.S. Summation Service

Advantages of Summation Service
* The server only sums up gradient, which is framework-independent (generic)
* The heavy optimizer update is now performed by GPU (high performance)

A high level comparison:

Parameter Server BytePS
bp bp
sum i sum
CPU

optimizer optimizer

Evaluation

GPU servers, each with 8 V100 GPUs and a 100Gbps NIC
RDMA/RoCEv2 network, full bisection bandwidth

Benchmarks: BERT-Large, ResNet, Transformer, GPT-2, VGG, UGATIT-GAN
Baselines:

Naive PS
- All-reduce
BytePS w/o CPU servers
Linear scaling
. Metric: training speed (samples/sec or tokens/sec)

BERT-Large (TF)

Without BytePS, the entire training takes about 18-19 days!
We reduce the training time to about 10 days.

steps/sec 32 GPUs 256 GPUs
Baseline (Horovod) 1.00 0.71
BytePS 1.35 1.34

Near 89%+ performance gain for 256 GPUs

Video Classification (MxNet)

ResNet-alike, image classification model

O
)
2]
S~
n
Q
(@)]

©
IS

0.75 1
0.50 A1
0.25 1

le5

Native-PS
Il All-reduce
B BytePS w/o CPU machines

0.00 -

BN BytePS \
[Linear-Scaling E
8 16 32 04 128
The Number of GPUs

256

TF ResNet-50, batch = 256 images

97.5% scaling
efficiency for 256 GPUs

33

Scalability

BytePS scales well on almost all models

BytePS outperforms PS & All-reduce on all CV and NLP models

1le5

Native-PS
| = All-reduce
| W BytePS w/o CPU machines
BN BytePS

[Linear-Scaling

8 16 32 64
The Number of GPUs

128 256

led

6
Native-PS

| M All-reduce
78 BytePS w/o CPU machines
AWl BytePS

| 3 Linear-Scaling

Images/sec

128
The Number of GPUs

8 16 32 64 256

Images/sec

le2

B All-reduce
/4 BytePS w/o CPU machines
BN BytePS

[Linear-Scaling

256

8 16 32 64 128
The Number of GPUs

TF ResNet-50, batch = 256 images

MxNet VGG-16, batch = 96 images

PyTorch UGATIT-GAN, batch = 2 images

Tokens/sec

le6

Native-PS
B All-reduce
Z8 BytePS w/o CPU machines
271 swm BytePS
[Linear-Scaling

8 16 32 04
The Number of GPUs

128 256

le6

4 1 Native-PS
Bl All-reduce
78 BytePS w/o CPU machines
ANl BytePS

[Linear-Scaling

Tokens/sec
N

128
The Number of GPUs

8 16 32 64 256

Tokens/sec

leqd

4 mmm All-reduce
4 BytePS w/o CPU machines
BN BytePS

2 1 3 Linear-Scaling

256

8 16 32 64 128
The Number of GPUs

TF Transformer, batch = 3072 tokens

MxNet BERT-Large, batch = 8192 tokens

PyTorch GPT-2, batch = 80 toﬁens

Ssummary

BytePS

RDMA for tensor communication acceleration

ByteScheduler: optimal communication and
computation overlapped tensor scheduler

Summation Service: better computation partitioning

ML systems opportunities

Distributed, parallel HPC
Scale out and up

Reduce cost

Number of neurons (logarithmic scale)

1011
1010
109
108
107
109
105
104
103
102
10!
100
1071

1

[Roundwarm]

o (Srenee)
2056

Q&A

- Thanks the interns and members of the Machine Learning Systems
Group at ByteDance AllLab!

- We are hiring!
« Both ByteDance Networking, and Machine Learning Systems groups

« guochuanxiong@bytedance.com

Jii| ByteDance

36

mailto:guochuanxiong@bytedance.com

