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Abstract— The Smoothed Round Robin (SRR) [7] packet
scheduler is attractive for use in high-speed networks due to
its very low time complexity, but it is not suitable for real-
time applications since it cannot provide tight delay bound. In
this paper, we present two improved algorithms based on SRR,
namely SRR+ and SRR#, which are based on novel matrix
transform techniques. By transforming the irregular Weight
Matrix of SRR into triangular and diagonal ones, SRR+ and
SRR# are able to evenly interleave flows based on their reserved
rates even in skewed weight distributions. SRR+ and SRR#

provide bounded delay, whereas are still of low space and time
complexities and are simple to implement in high-speed networks.
The properties of SRR+ and SRR# are addressed in detail
through analysis and simulations. SRR+ and SRR#, together
with SRR and the recently developed G-3 scheduler [9] form a
full spectrum of schedulers that provide tradeoffs among delay,
time complexity, and space complexity.

I. INTRODUCTION

The Internet has become to be a global information in-
frastructure that must support different applications such as
voice-over-IP, video streaming, video conferencing, etc. The
traditional Internet, however, only provides a “best-effort”
service, and does not provide guarantees on whether a packet
will be delivered, when a packet will arrive at its destination,
and how much bandwidth an application can get.

To extend the “best-effort” Internet to support different types
of applications (e.g., real-time applications), many service
models have been proposed (e.g., [2], [3]). One of the key
technologies in routers to differentiate applications according
to their requirements is a packet scheduler. A packet scheduler
decides which packet to serve when the output link has
finished transmitting the previous packet. Due to their ability
to provide fair bandwidth sharing and end-to-end delay bound,
Fair Queueing (FQ) packet schedulers have been studied
extensively in the last decade [1], [5], [12], [14], [15], [17].

The bandwidth of a single network interface now reaches
up to 100 Gb/s, which means a packet scheduler needs to
handle hundreds of millions of packets per-second. Therefore,
packet schedulers are required to be of extreme low time
complexity (O(1) time complexity is preferred). Round-robin
based schedulers visit and serve flows in a network interface
circularly and repeatedly, and generally have very low time
complexity due to their “round-robin” nature. Hence, round-
robin based schedulers are suitable for implementation in high-
speed routers.

This work was performed before the author joined MSRA and was
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Round-robin schedulers, however, are well known for their
scheduling burstiness. For example, for three flows f1-f3 with
weights 4, 2, 1, the service sequence of Weighted Round Robin
(WRR) in one round is f1f1f1f1f2f2f3, whereas a much
smoother service sequence is f1f2f1f3f1f2f1. Burstiness can
result in large delay for a flow even if it has a large weight
(consider the case that when a flow with large weight arrives,
this flow must wait until all the other flows have been visited).

To reduce the scheduling burstiness, we have proposed
a Smoothed Round Robin (SRR) packet scheduler in our
previous work [7]. SRR codes the weights of the flows into
binary vectors to form a Weight Matrix (WM), and then uses a
Weight Spread Sequence (WSS), which is specially designed
to distribute the scheduling output more evenly, to schedule
packets by scanning the Weight Matrix. SRR possesses better
short-term fairness and scheduling delay properties in com-
parison with WRR. At the same time, SRR preserves O(1)
time complexity due to its specifically designed data structures.
The worst-case delay of SRR, however, is in proportion to the
number of active flows in the scheduler. SRR therefore is not
suitable for real-time applications that need tight end-to-end
delay bound.

In this paper, we present two novel improvements of SRR,
namely SRR+ and SRR#, by transforming the Weight Matrix
of SRR into more regular ones. The transforms result in
better scheduling output and smaller delay bound, with only
moderate increases in time and space complexities. SRR,
SRR+, SRR#, and the recently developed G-3 scheduler [9]
provide a full spectrum of schedulers that have different delay,
time-complexity, and space-complexity properties.

The rest of the paper is organized as follows. We provide
background materials and review SRR and its data structures
in Section II. We then present SRR+ and SRR# and analyze
their properties in Section III and IV, respectively. We use
simulations to demonstrate the delay properties of SRR+ and
SRR# in Section V. Related work is discussed in Section VI
and the paper concludes in Section VII.

II. PACKET SCHEDULING BACKGROUND AND SRR

This section is the base for the design and analysis of SRR+

and SRR#. The major content of this section is reproduced
from [9]. It is included here to make this paper self-contained.

A. Packet Scheduling Background

Modern high-speed routers are composed of many network
interfaces that are interconnected by a switching fabric (e.g.,



a crossbar). The operation of the switching fabric is divided
into small time-slots. Packets of variable sizes are divided
into small fixed sizes (e.g., 64 bytes) in the input network
interfaces and reassembled in the output network interfaces.
For this reason, we assume that packets are of the same size
L in the rest of the paper.

Each network interface uses a packet scheduling algorithm
to decide which packet to serve among all the competing
packets in that network interface. In an FQ packet scheduler,
there are many active flows that compete for the output
bandwidth. We assume there are N flows in the scheduler,
named as f0, f1, · · · , fN−1. The output bandwidth of the link
is C. For flow fi, there is a reserved rate ri. For schedulability
reason, we need

∑N−1
i=0 ri ≤ C. A flow fi is assigned a weight

wi which is in proportion to its rate ri. In this paper, without
losing generality, we assume wi = ri.

A packet scheduler is composed of three parts: A flow add
procedure to accept a new flow, a flow delete to remove an
old flow, and a schedule to decide which packet to serve once
the previous packet has been transmitted. A packet scheduler
needs to invoke the schedule procedure for each packet. The
schedule procedure is therefore required to be of low time-
complexity. A real-time flow (e.g., VoIP) on average lasts for
tens of seconds and transmits at least hundreds or thousands of
packets per-second. The flow add and flow delete procedures
are therefore much less time-critical. A time-complexity of
approximately O(logN) should be good for flow add and
flow delete.

In an ideal scheduler, for a flow f with rate rf , the total
bytes that has been transmitted at time t is denoted as Sid

f (t) =
rf (t − t0), where t ≥ t0 and t0 is the arrival time of flow
f . It is easy to observe that, in the ideal scheduler, the ith
(i > 0) packet of f will be finished transmission at time
tidf (i) = t0 + i×L

rf
, where L is the packet size. We also denote

the bits transmitted of f at time t in a real packet scheduler
ps as Sps

f (t). We call Sid
f (t) ideal service curve of f and Sps

f

service curve of f under packet scheduler ps, respectively. Due
to the packetized nature of a packet network, the finish time
tps
f (i) of the ith packet of flow f in a real packet scheduler

ps may be different from tidf (i) in the ideal scheduler.
Definition 1: We say that a packet scheduler ps provides

bounded delay for flow f , if the finish time tps
f (i) of the ith

(i > 0) packet satisfies

tps
f (i) ≤ t0 +

i × L

rf
+ dps

f (1)

where dps
f is defined as

dps
f = max

i>0
{tps

f (i) − tidf (i)} ≤ const (2)

where const is a small constant that is not related to N , the
number of active flows in the scheduler.

Suppose packet scheduler ps provides bounded delay dps
f

for flow f ; dps
f is defined in Definition 1. For flow f with

reserved rate rf , its ideal serve curve and real service curve

under ps has the following relationship:

Sps(t) ≥ Sid(t − dps
f − L

rf
+

L

C
) (3)

And if Sps(t) ≥ Sid(t − τ), we have

dps
f ≤ τ (4)

The correctness of Equation (4) is apparent and the correct-
ness of Equation (3) is proved in [9].

B. Smoothed Round Robin

In order to reduce scheduling burstiness of WRR, Smoothed
Round Robin (SRR) [7] introduces two data structures: Weight
Spread Sequence (WSS) and Weight Matrix (WM).

In SRR, the weight of fi is represented as wi = ri =∑k−1
j=0{ai,j2j}, where k ≤ �log2C� + 1. The binary coeffi-

cients ai,j of the N active flows are used to form a (N × k)
Weight Matrix as below.

WM =




a0,(k−1) a0,(k−2) · · · a0,0

a1,(k−1) a1,(k−2) · · · a1,0

...
...

. . .
...

aN−1,(k−1) aN−1,(k−2) · · · aN−1,0


 (5)

where ai,j ∈ {0, 1}, 0 ≤ i ≤ N − 1, and 0 ≤ j < k. The
columns of the Weight Matrix are numbered from left to right
as colk−1, colk−2, · · ·, col0, respectively. Note that the weight
of terms in column i is 2i. We further denote yj =

∑N−1
i=0 ai,j

for 0 ≤ j ≤ k − 1. For this WM matrix, we have

0 ≤ yj ≤ N (6)

and
N−1∑
i=0

ri =
N−1∑
i=0

k−1∑
j=0

{ai,j2j} =
k−1∑
j=0

{yj2j} ≤ C (7)

where C is the bandwidth of the output link.
In SRR, the Weight Matrix is then scanned by a specially

designed Weight Spread Sequence (WSS). A set of WSS is
defined as

WSSk = {ak
i |1 ≤ i ≤ 2k − 1} (8)

where ak
i is defined recursively as

ak
i =




ak−1
i , 1 ≤ i ≤ 2k−1 − 1

k, i = 2k−1

ak−1
i−2k−1 , 2k−1 < i ≤ 2k − 1

(9)

for k > 1, and WSS1 = {a1
1 = 1}. We call k the order

of sequence WSSk. It is apparent that the set of elements of
WSSk is {1, 2, 3, · · · , k} and the size of WSSk is 2k − 1.
From the definition, we get WSS1 = {1}, WSS2 = {1, 2, 1},
WSS3 = {1, 2, 1, 3, 1, 2, 1}, etc. Note that element i appears
2k−i times in WSSk.

For a Weight Matrix that has k columns, there is a cor-
responding WSS of order k. The Weight Matrix and the
WSS sequence are then combined to design the SRR packet
scheduler. In SRR, WSS is scanned term by term pointed by a
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pointer pw. pw starts from 1 and is incremented by one when
one term of WSS is scanned. The index of the next WSS item
that pointed by pw is calculated by {1+pw mod (2k−1)}. That
is, when pw reaches the last term of WSS, it starts from the
first term again. When the current term of WSS pointed by pw

is element i, column colk−i of the Weight Matrix is selected.
For each occurrence af,k−i �= 0 in this column, packet from
flow corresponding to the row of af,k−i is then scheduled.
Due to the properties of WM and WSS, it is easy to observe
that a flow with reserved rate r is visited r times in a round.

When flows arrive or leave, they need to be added or
removed from the Weight Matrix. The number of columns of
the Weight Matrix, k, may change accordingly. The maximum
value of k is �log2 C�+1. The dynamic change of k does not
affect the time complexities of SRR [7] and the new schedulers
we present in this paper. For description simplicity, we denote
the number of columns of all the matrices as k.

Due to the simplicity of the scheduling procedure, SRR
achieves O(1) time-complexity for packet scheduling. SRR
is also able to provide good short-term fairness among two
competing flows [7]. SRR, however, cannot provide low delay
bound. This can be illustrated by the skewed weight distri-
bution example as follows. Suppose the output bandwidth is
2n, and there are 2n−1 flows f1 − f2n−1 with reserved rate
1 in the beginning. Then a flow f0 with reserved rate 2n−1

comes when the scheduler is serving the first flow f1. f0 must
wait for all the other 2n−1 flows before its first packet can be
served, even its reserved rate is much higher than all the other
flows.

In fact, the above observation can be quantitative analyzed.
In SRR, when a non-zero term ai,j of the Weight Matrix is
visited, we say that the corresponding flow fi is assigned a
time-slot. We use a variable TS(t) to count the number of
time-slots assigned in SRR at time t. TS is set to 0 when
SRR starts (i.e., TS(0) = 0), and is increased by 1 when a
non-zero term of the Weight Matrix is visited.

Suppose a flow f with weight 2n, i.e., r = 2n, arrives at
the scheduler at time t0, and the corresponding element k−n
in WSS has been scanned j times at t0. We denote the value
of TS at the time when f has been served i times as TS(ti).

Definition 2: We define TSn(i) = TS(ti)−TS(t0), which
is the number of assigned time-slots in SRR from the time
when flow f (with rate 2n) arrives to the time when f is
served i (i ≥ 1) times.

As to TSn(i), we have lemma as follows.
Lemma 1: For a flow f with rate 2n in SRR, from the time

when f arrives at the scheduler to the time when f is served
i times, the value of TSn(i) is bounded by

TSn(i) ≤ iC

2n
+ θ(n)N. (10)

where −n < θ(n) < n.
Based on Lemma 1, we get the following results on the

delay property of SRR.
Lemma 2: For a flow f with rate 2n (0 ≤ n < k), its delay

bound in SRR is

d�
f ≤ θ(n) × N × L

C
(11)

Similar result exists for flows with arbitrary rate. We have
the following theorem:

Theorem 1: In SRR, for a flow f with rate rf = wf =∑m
i=1 2ni (0 ≤ n1 < n2, · · · , < nm ≤ k − 1),

d�
f < θ(nm) × N × L

C
+ (m − 1)

L

rf
(12)

where C is the bandwidth of the output link, m is the number
of non-zero coefficients of rf .

The proofs of Lemma 1 and 2 and Theorem 1 can be found
in [8], and are omitted here due to space limitation. Theorem
1 shows that the delay of SRR is in direct proportion to the
number of active flows.

III. SRR+

A. The SRR+ Scheduler

The key idea of SRR+ is to introduce a matrix transform
to normalize the Weight Matrix, so that the weight matrix be-
comes more regular and the skewed weight distributions can be
handled. In SRR+, we sum up the weights of each column of
the Weight Matrix to compose k new flows f+

0 , f+
1 , · · · , f+

k−1.
The weight of flow f+

i (0 ≤ i ≤ k − 1) is therefore

w+
i = 2i

N−1∑
j=0

aj,i = 2iyi =
k−1∑
j=0

a+
i,j2

j (13)

We then use the weights of the k composed flows to form
a new k × k square matrix, WM+, as illustrated in Figure 1.

Procedure 1: Matrix transform to generate WM+

Input: a N × k matrix WM;
Output: a k × k matrix WM+;
for (i = 0; i < k; i + +) {

w+
i = 2i

∑N−1
j=0 aj,i =

∑k−1
j=0 a+

i,j2
j ;

use a+
i,j(0 ≤ j < k) to form the ith row of WM+;

}

Fig. 1. Procedure to generate the WM+ matrix.

For WM+, the following lemma holds.
Lemma 3: For a (k × k) WM+ matrix, a+

i,j = 0 for j < i.
Proof: From Equation (13), we have w+

i = 2iyi. The
binary coefficients a+

i,j therefore is 0 for 0 ≤ j < i ≤ (k−1).
The lemma is therefore proved.

From Lemma 3, we know that WM+ is a triangular matrix,
and can be represented as follows.

WM+ =




a+
0,(k−1) a+

0,(k−2) · · · a+
0,1 a+

0,0

a+
1,(k−1) a+

1,(k−2) · · · a+
1,1 0

...
...

. . .
...

a+
(k−1),(k−1) 0 · · · 0 0



(14)
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By this matrix transforming, we transform the irregular
(N × k) matrix WM+ into a regular (k × k) matrix WM+.

As in [7], in order to reduce time complexity, we introduce
doubly linked list (DL) to link the non-zero terms of WM and
WM+. Each node of a DL list has three fields: next, prev,
and fid, with next points to the next node, prev points to the
previous node, and fid is the flow id. For WM+, the non-zero
terms of column i are linked together to form doubly linked
list DL+

i , with the head node named head+[i], and the tail
node named tail+[i]. The prev field of the head node and the
next field of the tail node are set to NULL. When the terms
of a column i are all 0, head+[i] = NULL

The double links {DLi|0 ≤ i < k} that correspond to WM
have the same structure as that of WM+, except that the next
field of the last node of a double link points to the first node
instead of NULL (i.e., the double linked lists DLis of WM
are circular lists).

The formal description of SRR+ is given in Fig. 2. In SRR+,
there is a pointer pw points to the current scanned position of
the WSS sequence, pw is initialized to 1. There is a pointer
P+ points to the current scanned non-zero term of the WM+

matrix. For each DLi, there is also a pointer P [i] to remember
the current scanned term of DLi. P [i] is initialized to point
to the first node of DLi.

SRR+ then performs scheduling as follows. SRR+ scans
the WSS sequence term by term. When the current WSS term
is i, column col+ = k− i of the WM+ matrix is selected (line
1). Then from the head to tail, SRR+ traverses DL+[col+]
(lines 2-3). SRR+ then gets the fid of the current node of
DL+[col+] (line 4), uses this fid as an index to the column
number of the WM matrix, and gets the flow id f of the current
node of that column of WM (line 5). Flow f is then selected.

If f is backlogged (i.e., there are packets queued in the
system) (line 6), ServFlow is then invoked to serve the flow
(line 7). The task of ServeFlow(f ) is to dequeue the first packet
of f from the queue, then transmit it.

If f is not backlogged, idle sched is called (line 8-9). In
idle sched, the schedule opportunity is assigned to the best-
effort flow. In SRR+, the best-effort flow is the flow that does
not have explicit bandwidth requirement.

Lines 10, 11, 13 are to adjust the pointers P [col], P+, and
pw.

When a new flow f comes, flow add is called. flow add
first expresses the rate of f into binary form (line 14), then
for each non-zero binary coefficients ai (line 15), the ith row
of WM+ needs to be regenerated by calling gen row wm+

(line 16), and a new node needs to be appended to the tail of
DLi (i.e., the list that represents the ith column of WM) (line
17). If new columns are added into WM+, then the order of
the WSS sequence and the value of pw need adjustment (lines
19-22). The order of WSS is adjusted to the column number
of WM+. When the order of WSS increases from k to j, the
net effect is that we multiple pw by 2j−k.

When a flow f leaves, flow delete is invoked. For each non-
zero binary coefficient ai (lines 23-24), the ith row of WM+

needs to be regenerated (line 25), and the node represents ai

Schedule:
while (in busy-period) {

1 i = WSSk[pw]; col+ = k − i;
2 P+ = head+[col+];
3 while (P+ �= NULL) {
4 col = P+ → fid;
5 f = P [col] → fid;
6 if ( f is backlogged)
7 ServeFlow(f );
8 else
9 idle sched();
10 P [col] = P [col] → next;
11 P+ = P+ → next;
12 }
13 pw = 1 + pw mod (2k − 1);
}

flow add(f, rf )
14 rf =

∑k−1
i=0 ai2i;

15 for (each binary coefficient ai �= 0) {
16 gen row WM+(i);
17 append a new node at the tail of DLi;
18 }
19 if(new columns are added into WM+){
20 pw = pw2j−k; /* j is the new order of WSS */
21 k = j;
22 }
flow delete(f, rf ):
23 rf =

∑k−1
i=0 ai2i;

24 for (each binary coefficient ai �= 0) {
25 gen row wm+(i);
26 delete node that represents ai from DLi;
27 }
28 if(empty columns are removed from WM+) {
29 pw = � pw

2k−j 	 /* j is the new order of WSS */;
30 k = j;
31 }

Fig. 2. Description of the SRR+ packet scheduler.

in DLi needs to be deleted (line 26). If empty columns are
removed from WM+, the order of WSS and the value of pw

also needs to be adjusted (lines 28-31).

In both flow add and flow delete, gen row wm+ is used
to update a row of WM+. The gen row wm+ procedure is
illustrated as follows.
gen row wm+(i):
1 wprev =

∑k−1
j=0 a+

i,j2
j ;

2 wcurr =
∑k−1

j=0 b+
i,j2

j ;
3 for (j = 0; j < k; j + +) {
4 if (a+

i,j == 1 and b+
i,j == 0) {

5 if (P+ points to a+
i,j)

6 P+ = P+ → next;
7 remove node that represents a+

i,j from DL+
j ;

8 }
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9 if (a+
i,j == 0 and b+

i,j == 1)
10 insert new node that represents b+

i,j to DL+
j ;

11 }

Row i of WM+ represents the sum of weights of the terms
in column i of WM. In gen row wm+, we use wprev and
wcurr to represent the weights of column i of WM before and
after adjustment, respectively (lines 1-2). We then compare the
binary coefficients of wprev and wcurr (line 3). If the previous
coefficient ai,j = 1 and the current coefficient b+

i,j = 0, then
the node that represents a+

i,j needs to be removed from DL+
j

(line 7). In this case, we also need to judge if P+ points to
an empty node. If that is the case, we need to put P+ into
the right place (lines 5-6). If a+

i,j = 0 and b+
i,j = 1, new node

needs to be inserted into DL+
j (lines 9-10).

We use an example to illustrate how SRR+ works. Suppose
we have 7 flows numbered from f0 to f6 with rate 1, 3 flows
numbered from f7 to f9 with rate 2, 1 flow f10 with rate
4. Then the corresponding WM and WM+ matrices are as
follows.

WM =




0 0 1
· · ·

0 0 1
0 1 0
0 1 0
0 1 0
1 0 0



→ WM+ =


 1 1 1

1 1 0
1 0 0




Since the generated WM+ has 3 columns, a WSS of order 3,
{1,2,1,3,1,2,1}, is used. The first term of WSS3 is 1, based on
the scheduling procedure of SRR+, column 3-1=2 of WM+

is selected. SRR+ then scans column 2 of WM+ from top
to bottom. The first non-zero term is at row 0, then column
0 of WM is selected, the first non-zero term of column 0
corresponds to f0, f0 is therefore chosen and served. The
second non-zero term of column 2 of WM+ is at row 1, then
column 1 of WM is selected, the first non-zero term is at row
7, f7 is then selected and served. Similarly, the next flow to
serve is then f10. After that, SRR+ has scanned all non-zero
terms of column 2 of WM+. It then increases pw to scan the
next term of WSS, · · ·. Using the scheduling procedure, we
get the service sequence in a round

f0f7f10f1f8f2f9f10f3f4f7f10f5f8f6f9f10,

Whereas the corresponding service sequence of SRR is

f10f7f8f9f10f0f1f2f3f4f5f6f10f7f8f9f10

From the above two sequences, we observe that the low
weight flows f0 − f6 are interleaved more evenly in SRR+

than in SRR.
Readers can also check that SRR+ solves the skewed weight

distribution example in Section II. The scheduling output of
that example is f1f0f2f0 · · · f2n−1f0. f0 therefore needs to
wait for only one flow instead of 2n−1 flows before its first
packet gets served.

B. Delay Property of SRR+

Lemma 4: When WM is fixed, for a flow f with rate
2n (0 ≤ n ≤ k − 1) in SRR+,

d+
f ≤ θ(k − 1) × k × L

C
. (15)

Proof: Based on the constructing procedure of WM+,
flow f must be represented by a term a+

g,m (0 ≤ g ≤ k −
1,m ≥ n) in WM+.

Flow f will be served once when a+
g,m is served every 2m−n

times. We therefore have

Tf,n(i) = Tg,m(i2m−n − δ)

where δ is a constant, and 0 ≤ δ < 2m−n.
From Equation (10), we have

Tg,m(i) ≤ iC

2m
+ θ(m) × k,

since the maximum number of flows in WM+ is k.
Thus,

Tf,n(i) ≤ (i2m−n−δ)C
2m + θ(m) × k

= i×C
2n + θ(m) × k − δC

2m

≤ i×C
2n + θ(m) × k

Therefore,

d+
f (i) = t0 + Tf,n(i) L

C − (t0 + i L
2n )

≤ θ(m) × k × L
C

Since m ≤ k − 1, we therefore have

d+
f ≤ θ(k − 1) × k × L

C
.

Based on Lemma 4, we get delay bound for flows with
arbitrary reserved rates. We have theorem as follows.

Theorem 2: When WM is fixed, for a flow f with rate rf =
wf =

∑m
l=1 2nl (0 ≤ n1 < n2, · · · , nm ≤ k − 1), its delay

bound is
d+

f ≤ θ(k − 1) × kL

C
+

mL

rf
− L

C
(16)

Proof: Our proof strategy is to decompose the flow f into
a set of flows {f1, f2, · · · , fm} with rates {2n1 , 2n2 , · · · , 2nm}.
Then by using Lemma 4 and Equation 3, the service curve of
flow fi, Sfi

, has inequality as follows.

Sfi
(t) > Sid

fi
(t − d+

fi
− L

2ni
+

L

C
)

The service curve of f can be gotten by summing up the
service curves of the m flows. Therefore, in SRR+

Sf (t) =
∑m

i=1 Sfi
(t) >

∑m
i=1{2ni(t − d+

fi
− L

2ni
+ L

C )}
≥ ∑m

i=1{2nit} − ∑m
i=1{2niθ(k − 1) × k × L

C }
−mL +

∑m
i=1{2ni L

C }
= rf (t − θ(k − 1)k×L

C − mL
rf

+ L
C )

By using Equation (4), we therefore get

d+
f ≤ θ(k − 1) × kL

C
+

mL

rf
− L

C

The theorem is therefore proved.
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C. Time and Space Complexities of SRR+

From Fig. 2, it is easy to observe that Schedule can be
carried out in strict O(1) time to choose a flow to serve. The
time complexities of flow add and flow delete are all O(k2).
This is because that when a flow is added or removed, the
WM+ matrix needs to be re-generated. In the worst-case,
one needs k2 steps to re-generate this k × k matrix. The time
complexity of SRR+ is therefore comparable with that of SRR.

The space complexity of SRR+ is O(2k + N × k + k2),
where 2k is the space to store the WSS sequence, N ×k is the
space to hold the WM matrix, and k2 is the space to store the
k× k WM+ matrix. O(N × k) is inevitable for all FQ packet
schedulers, since it is the lower bound to hold the reserved
rates for all the active flows. The space needed to hold the
WSS sequence increases exponentially as k increases. Similar
with SRR, SRR+ can use a WSS sequence of order n + 1 to
produce a WSS sequence of order 2n. By using this technique,
the space to store the WSS sequence reduces from O(2k) to
O(2

k
2 ), and the scheduler needs one additional step to access

the terms of the WSS sequence [7].
As compared with SRR, SRR+ needs additional k2 space to

store the WM+ matrix. This additional space is not an issue,
since k2 is a small number even when k is as large as 32.

SRR+ therefore provides much better delay guarantee than
SRR, with minimal increase in space and time complexities.

IV. SRR#

A. The SRR# Scheduler

The Matrix Transforming idea explored in SRR+ can be
performed more than once. In what follows we present a new
scheduler, which we call SRR# by iteratively transforming the
Weight Matrix to more regular forms.

We introduce a new definition as follows.
Definition 3: A k × k matrix is defined to be a diagonal

matrix, if its terms ai,j(0 ≤ i, j ≤ k − 1) satisfy

ai,j =
{

0, i �= j
0 or 1, i = j

(17)

It is easy to observe that the sum of each column of a diagonal
matrix, yi ≤ 1 (0 ≤ i ≤ k − 1).

We then use Procedure 2 as depicted in Fig. 3 to construct
a serial of weight matrices and a diagonal matrix WM#.

Procedure 2: Iterative matrix transforms to generate WM#

Input: WM0 = WM+;
Output: WM# and {WM i|1 ≤ i ≤ k − 1 };
for (i = 1; i < k; i + +) {

for (j = 0; j < k; j + +) {
wj = 2j

∑k−1
l=0 ai−1

l,j ;
use wj to generate jth row of WM i;

}
}
WM# = WM i;

Fig. 3. Procedure to produce a serial of transformed matrices and the WM#

matrix.

In Procedure 2, WM+ is the matrix that defined by Equa-
tion (14), ai

l,j is the term at row l and column j of WM i.
It is possible to generate WM# in less than k − 1 iterations
for certain input matrices, but k−1 iterations is needed in the
worst-case. We have the following lemma for WM#:

Lemma 5: The output matrix WM# of Procedure 2 is a
diagonal matrix.

Proof: First we note that the matrix gotten after one
matrix transform of a triangular matrix is still a triangular
matrix.

From Lemma 3, we know that for a WM+ matrix, a+
j,0 = 0

for j �= 0. Therefore, after the first matrix transform, we have
a1
0,l = 0 for l �= 0. And Since WM1 is also a triangular matrix,

we have a1
j,0 = 0 for j �= 0.

Similarly, we get that after the second iteration, a2
1,l =

a2
j,1 = 0 for j �= 1, l �= 1. And iteratively, we have ai

(i−1),l =
ai

j,(i−1) = 0 for l �= i− 1 and j �= i− 1 after the ith iteration.
We therefore get a diagonal matrix after k − 1 matrix

iterations. Since WM# = WMk−1, WM# is therefore a
diagonal matrix.

WM# therefore can be denoted as follows.

WM# =




0 0 · · · 0 a#
0,0

0 0 · · · a#
1,1 0

...
...

. . .
...

a#
k−1,(k−1) 0 · · · 0 0


 (18)

where a#
i,i ∈ {0, 1} (0 ≤ i ≤ k − 1) and a#

(k−1),(k−1) = 1.
There are k+1 matrices in Procedure 2: WM, WM0, WM1,

· · ·, WMk−1 (WM0 is WM+ and WMk−1 is WM#). From the
proof of Lemma 5, we get that WMi is more “regular” than
WMi−1. We are therefore able to provide a serial of schedulers
by using these matrices. For example, by using WM1, WM+,
and WM, a new scheduler can be designed. These scheduler
are similar in spirit. We only present SRR#, which uses all
the matrices and provides the best delay bound.

Similar with SRR+, SRR# uses doubly linked lists to
denote the matrices. For each column col of WMi, there is a
pointer P i[col] points to the current scanned node. The formal
description of SRR# is given in Fig. 4.

The Schedule procedure is similar with that of SRR+, except
that more matrices need to be visited. When the current term
of WSS is i, column k− i of WM# is selected (line 1). Since
the only term that can be non-zero is a#

i,i in this column, SRR#

checks this term directly (line 2). If the term is not zero, SRR#

then iteratively visit the k − 1 matrices. The column number
of the next visited matrix is identified by the fid of the current
DL node (lines 3-5). After that, the column number of WM
can be identified, and the flow to be served is selected (line
7). The rest of Schedule is similar with that of SRR+ (lines
8-14).

When a new flow f with reserved rate rf comes, flow add
is called. WM and the rest k matrices are regenerated (lines
16-18). The order of WSS and the pointer pw is adjusted
accordingly (lines 19-22).
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When a flow f leaves, flow delete is invoked to remove the
flow. The matrices are updated accordingly (lines 24-26) and
the order of WSS and the pointer pw are also updated (27-
30). Note that the details of adjusting the pointers P i[col] in
flow add and flow delete are omitted in Fig. 4 for description
simplicity. These details are similar to those in Fig. 2.

Schedule:
while (in busy-period) {
1 i = WSSk[pw]; i = col = k − i;
2 if (a#

i,i == 1) {
3 for (j = k − 1; j ≥ 0; j −−) {
4 col = P j [col] → fid;
5 P j [col] = P j [col] → next;
6 }
7 f = P [col] → fid;
8 if(f is backlogged)
9 ServeFlow(f );
10 else
11 idle sched();
12 P [col] = P [col] → next;
13 }
14 pw = 1 + pw mod (2k − 1);
}
flow add(f, rf ):
15 rf =

∑k−1
i=0 ai2i;

16 use the coefficients ai to update WM;
17 generate WM+ using Procedure I;
18 generate WM# and WMis using Procedure II;
19 if(new columns are added into WM#){
20 pw = pw2j−k; /* j is the new order of WSS */
21 k = j;
22 }
flow delete(f, rf ):
23 rf =

∑k−1
i=0 ai2i;

24 use the coefficients ai to update WM;
25 generate WM+ using Procedure I;
26 generate WM# and WMis using Procedure II;
27 if(empty columns are deleted from WM#) {
28 pw = � pw

2k−j 	 /* j is the new order of WSS */;
29 k = j;
30 }

Fig. 4. Description of the SRR# packet scheduler.

We use the same example as in Section III to illustrate how
SRR# works. The matrices in SRR# are generated as follows.

WM → WM+


 1 1 1

1 1 0
1 0 0


 → WM1


 0 0 0 1

0 1 0 0
1 1 0 0




→ WM2




0 0 0 1
0 0 0 0
1 0 0 0
1 0 0 0


 → WM3




0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0




→ WM#




0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0




Since the number of columns of WM# is 5, a WSS
sequence of order 5 is then used. SRR# performs scheduling
as follows. The first term of WSS5 is 1, column 4 of WM# is
selected. The first (in fact, the only) non-zero term of column
4 of WM# is at row 4. Column 4 of WM3 is then selected.
The first (in fact, the only) non-zero term of column 4 of WM3

is at row 3. Column 3 of WM2 is then selected. The first non-
zero term of column 3 of WM2 is at row 2. Column 2 of
WM1 is then selected. The first non-zero term of of column 2
of WM1 is at row 1. Column 1 of WM+ is then selected. The
first non-zero term of column 1 of WM+ is at row 0. Column
0 of WM is then selected. The first non-zero term of column
0 is at row 0, f0 is therefor selected and served. Similarly, the
next flow to serve is f1. The service sequence of SRR# in a
round is

f0f1f7f10f8f2f9f10f3f4f5f7f10f8f6f9f10

B. Delay Property of SRR#

Lemma 6: When WM is fixed, for a flow f with rate
2n (0 ≤ n ≤ k − 1) in SRR#,

d#
f ≤ θ(k − 1) × L

C
(19)

The proof of this lemma is similar with that of Lemma
4. Note that the delay provided by (19) is better than (15)
of SRR+. The reason is that WM# is more “regular” than
WM+ (note that WM# is a diagonal matrix whereas WM+

is a triangular one). Better delay bound is the motivation that
we transform WM+ into WM#.

Based on Lemma 6, for flow with arbitrary rate, we have
the following theorem.

Theorem 3: When WM is fixed, for a flow f with rate rf =
wf =

∑m
l=1 2nl (0 ≤ n1 < n2, · · · , nm ≤ k − 1), its d+

f is
bounded by

d#
f ≤ θ(k − 1) × L

C
+

mL

rf
− L

C
(20)

The proof of this theorem is similar with that of Theorem
2. Theorem 3 shows that the delay bound of SRR# is similar
with that of G-3 and SRR+. From (16) and (20), we get
that the delay bound of SRR# is reduced by θ(k − 1) (k−1)L

C
as compared with that of SRR+. The significance of the
reduction, however, depends on the values of C and rf . When
C is large or rf is small, the major contribution of the delay
comes from L

rf
. For low bit rate flows, SRR# may not be

a good choice, since the gain in delay bound may not be
comparable with the loss in time complexity.

Note that in Theorems 2 and 3, we require that the Weight
Matrix is fixed. The WM+ and WM# matrices may change
as flows arrive and leave. The locations of the time-slots
assigned to a flow may change accordingly, which may result
in increased worst-case delays. We leave the delay analysis
when flows dynamically join and leave for further research.
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C. Time and Space Complexities of SRR#

The time complexity of Schedule is O(k) since SRR#

needs to traverse the k matrices to identify which column of
WM to visit and then decide which flow to serve. This is a
significant increase as compared with O(1) time complexity of
SRR+, since packet scheduling must be performed for every
packet. The time complexities of flow add and flow delete are
O(k3), since when a flow is added or removed, the k matrices
must be regenerated.

The space complexity of SRR# is O(2k + N × k + k3),
where k3 is the space needed to store the k generated k × k
matrices from the Weight Matrix. As compared with SRR+,
the increased space is to store the generated matrices from
WM+ to WM#. k3 is also not a big number. For example,
when k = 32, k3 is only 32768. Hence, the space complexity
of SRR# is also not an issue.

V. SIMULATION

We have implemented SRR+ and SRR# in NS2 [11]. In the
network as depicted in Fig. 5, the bandwidths and propagation
delays of R0R1 and R1R2 are 10 Mb/s and 10ms, respectively.
The bandwidths and delays are 100 Mb/s and 1 ms for the rest
of the links. The MTU of the network is 200 bytes and the
reserved rate of a flow is set to its sending rate.

Fig. 5. Network topology of the simulation.

We setup a CBR flow f1 between h0 and d0, a CBR flow
f2 with rate 1024 Kb/s between h1 and d1. There are 500
flows with rate 16 Kb/s between h2 to d2. There are also two
best-effort flows (f0) from h3 to d3 and h4 to d4 to occupy the
unallocated bandwidth. The two best-effort flows are generated
from two Pareto sources with mean on and off time 100 ms,
and α = 1.5. The average rate of each Pareto source is 2
Mb/s, which is larger than the unallocated bandwidth of the
network.

We then vary the rate of f1 from 32kb/s to 1024k/bs and
measure its end-to-end delays under G-3, SRR+, SRR#, and
SRR, respectively. The result is shown in Fig. 6.

Fig. 6 shows that G-3, SRR+, and SRR# outperform SRR
significantly. This is not a surprise, since the delay bounds
of all the schedulers except SRR are not depend on the
number of active flows in the scheduler. The maximum delay
of G-3, SRR+, and SRR# is strictly in inverse proportion
to the reserved rate of the flow. For example, the maximum
delays of f1 under G-3, SRR+, and SRR# are (88ms, 101ms,
104ms) and (25.6ms, 25.8ms, 24.9ms) for rates 32kb/s and

Fig. 6. Maximum and mean end-to-end delays for different reserved flow
rates under G-3, SRR, SRR+, and SRR#.

1024kb/s, respectively. All are smaller than their respective
delay bounds. The simulation conforms to our analysis that
the delay properties of G-3, SRR+, and SRR# are similar,
and is not affected by the number of active flows.

VI. RELATED WORK

Due to their low time-complexity nature, round-robin packet
schedulers are very suitable to be implemented in high-
speed routers to provide bandwidth and delay guarantees. For
this reason, many round-robin packet schedulers have been
proposed recently [4], [6], [7], [9], [10], [13], [14], [16], [18].

To reduce the burstiness of WSS, in Aliquem [10] and
PDRR [16], instead of using only one linked list, multiple
lists are introduced. Flows are placed to different lists based on
their weights. The schedulers visit the lists according to certain
rules. The schedulers are able to provide better delay bound
as compared with WSS. But the scheduling time complexities
of these schedulers are larger than O(1) and the delay bounds
are still in proportion to the number of active flows.

Recently, several round-robin schedulers try to improve
WSS using a hybrid approach [4], [13], [18]. These schedulers
cluster flows with similar weights into a same group (or
class). A time-stamp based approach is used for inter-group
scheduling, and a round-robin based approach is used for
intra-group scheduling. These schedulers generally reduce the
output burstiness and are still of low time complexity. For
example, GRRR [4] achieves O(1) time complexity for packet
scheduling and a delay bound that is in proportion to g2,
where g is the number of groups. The matrix transform
introduced in SRR+ can be considered a specific form of
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grouping: instead of assigning a flow to one group, SRR+

assigns the flow to multiple “groups” (i.e., multiple rows of
WM+) according to the non-zero coefficients of the reserved
rate. The “grouping” method used in SRR+ is therefore more
accurate. Moreover, SRR+ does not need to maintain time-
stamps to track the progress of each group, resulting in more
efficient implementation for high-speed routers (e.g., SRR+

does not need to perform division to calculate time-stamps
and comparison of time-stamps as compared with GRRR and
STRR).

RRR [6] uses a binary tree structure to track the bandwidth
allocation, and performs scheduling by recursively traversing
the tree. RRR is able to achieve bounded delay. Different from
the tree structure in RRR, the Weight Matrix used in SRR+

and SRR# achieves a serial of packet schedulers that provide
tradeoffs among delay, space-complexity, and time complexity.

The recently developed G-3 [9] scheduler achieves both
O(1) time complexity and bounded end-to-end delay. G-3 is
built over SRR [7] and RRR [6]. G-3 takes advantages of two
key data structures, Weight Spread Sequence (WSS, which is
introduced in SRR) and Weighted Binary Tree (WBT, which
is introduced in RRR). To achieve O(1) time complexity, G-3
introduces a time-slot array (TArray) to expand each weighted
binary tree (WBT). It also introduces a novel binary reversal
operation to update the TArrays when flows arrive and leave.
The space needed for the TArrays is C/gran, where C is the
bandwidth of the output link and gran is the bandwidth allo-
cation granularity. The space complexity of G-3 is therefore
O(C+N). When C is large, the space complexity of G-3 may
be much higher than that of SRR+ and SRR#. For example,
for a 40Gb/s network interface with rate granularity of 1Kb/s,
the space needed to store the Time-slot Arrays is 160 MB
(assume 4 bytes to store a flow id).

G-3, however, has one advantage that SRR+ and SRR# do
not have. The time-slots assigned to a flow is fixed in that
the addition and removal of flows do not affect the time-
slot locations of an existing flow. Schedule, flow add, and
flow delete therefore can be executed simultaneously, whereas
in SRR+ and SRR#, Schedule must synchronize with flow add
and flow delete, since the matrices that are used by Schedule
must be regenerated when flows arrive and leave. And matrices
regenerations may change the time-slot locations of an existing
flow and affect its delay. From these viewpoints, G-3 is simpler
and has better delay property than SRR+ and SRR#.

SRR, SRR+, SRR#, and G-3 all use the WSS sequence
and Weight Matrix as their central data structures (G-3 also
introduces other data structures). They provide a full spectrum
of round-robin schedulers that have different delay, space
complexity, and time complexity tradeoffs. When strict delay
bound is not needed and O(1) time-complexity is required,
SRR is a good choice; when strict delay bound is needed,
O(1) time-complexity is required, and space is not an issue,
G-3 is the best choice; when space is an issue and low time-
complexity and delay bound is needed, SRR+ is the choice;
when space is an issue, delay bound is needed, but low time-
complexity is not required, SRR# can be considered.

VII. CONCLUSION

We have presented two packet schedulers, SRR+ and
SRR#, which significantly improve the delay bound of the
original SRR scheduler. By transforming the Weight Matrix
into more regular triangular and diagonal ones, the burstiness
of scheduling output can be significantly reduced even for
skewed weight distributions, whereas the scheduling simplicity
is preserved. Both analysis and simulations show the superior
delay properties of SRR+ and SRR#. As compared with the
recently developed G-3 packet scheduler, SRR+ and SRR#

have much lower space complexity, but have larger time
complexity and delay bound. These three schedulers together
with SRR provide a full spectrum of fair queueing packet
schedulers that have different delay, space-complexity and
time-complexity tradeoffs for high-speed networks.
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